PyTorch之分布式操作Barrier
原始文档:https://www.yuque.com/lart/ug...
对于 barrier 的概念
对于 barrier 这个概念能够参考 Wiki 中的介绍:同步屏障(Barrier)是并行计算中的一种同步办法。对于一群过程或线程,程序中的一个同步屏障意味着任何线程/过程执行到尔后必须期待,直到所有线程/过程都达到此点才可继续执行下文。
这里要留神,barrier 这一办法并不是 pytorch 独有的,这是并行计算中的一个基本概念,其余的并行计算的场景下也可能会波及这一概念和操作。本文次要探讨 pytorch 中的状况。
torch.distributed.barrier(group=None, async_op=False, device_ids=None)Synchronizes all processes.This collective blocks processes until the whole group enters this function, if async_op is False, or if async work handle is called on wait().Parametersgroup (ProcessGroup, optional) – The process group to work on. If None, the default process group will be used.async_op (bool, optional) – Whether this op should be an async opdevice_ids ([int], optional) – List of device/GPU ids. Valid only for NCCL backend.ReturnsAsync work handle, if async_op is set to True. None, if not async_op or if not part of the group
在多卡训练的时候,因为不同的 GPU 往往被设定在不同的过程中,有时候为了在独自的过程中执行一些工作,然而又同时心愿限度其余过程的执行进度,就有了应用barrier
的需要。
一个理论的场景是筹备数据集:咱们只须要在 0 号过程解决,其余过程没必要也执行这一工作,然而其余过程的后续工作却依赖筹备好的数据。于是就须要在 0 号过程执行过程中阻塞其余的过程,使其进入期待状态。等到解决好之后,再一起放行。
这种需要下,一个典型的基于上下文管理器模式的结构如下:
# https://github.com/ultralytics/yolov5/blob/7d56d451241e94cd9dbe4fcb9bfba0e92c6e0e23/utils/torch_utils.py#L29-L38@contextmanagerdef torch_distributed_zero_first(local_rank: int): """ Decorator to make all processes in distributed training wait for each local_master to do something. """ if local_rank not in [-1, 0]: dist.barrier(device_ids=[local_rank]) yield if local_rank == 0: dist.barrier(device_ids=[0])
对于 barrier 的细节
# -*- coding: utf-8 -*-import osimport timeimport torch.distributed as distimport torch.multiprocessing as mpdef ddp_test_v0(local_rank, word_size): # Initializes the distributed backend which will take care of sychronizing nodes/GPUs dist.init_process_group(backend="nccl", world_size=word_size, rank=local_rank) print("first before barrier{}\n".format(local_rank)) if local_rank != 0: dist.barrier() print("first after barrier{}\n".format(local_rank)) print("inter {}".format(local_rank)) print("second before barrier{}\n".format(local_rank)) if local_rank == 0: dist.barrier() print("second after barrier{}\n".format(local_rank)) print("{} exit".format(local_rank))def ddp_test_v1(local_rank, word_size): # Initializes the distributed backend which will take care of synchronizing nodes/GPUs dist.init_process_group(backend="nccl", world_size=word_size, rank=local_rank) if local_rank != 0: print("1 before barrier{}\n".format(local_rank)) start = time.time() time.sleep(5) dist.barrier() print(time.time() - start) print("1 after barrier{}\n".format(local_rank)) dist.barrier() print("1 after barrier{}\n".format(local_rank)) else: print("0 before barrier{}\n".format(local_rank)) start = time.time() dist.barrier() print(time.time() - start) print("0 after barrier{}\n".format(local_rank)) print("0 after barrier{}\n".format(local_rank)) dist.barrier() print("0 after barrier{}\n".format(local_rank)) print("{} exit".format(local_rank))def main(): world_size = 2 os.environ["MASTER_ADDR"] = "127.0.0.1" os.environ["MASTER_PORT"] = "29500" mp.spawn(ddp_test_v0, args=(world_size,), nprocs=world_size, join=True)if __name__ == "__main__": main()
这里展现了两个例子,实际上在官网展现的 dist.barrier
之外显示了该办法的一个重要个性,就是其操作实际上是每一个过程外部都须要对应的执行同样的次数,才会对应的由阻塞变为失常运行。
先看第一个例子:
def ddp_test(local_rank, word_size): # Initializes the distributed backend which will take care of sychronizing nodes/GPUs dist.init_process_group(backend="nccl", world_size=word_size, rank=local_rank) print("first before barrier{}\n".format(local_rank)) if local_rank != 0: dist.barrier() print("first after barrier{}\n".format(local_rank)) print("inter {}".format(local_rank)) print("second before barrier{}\n".format(local_rank)) if local_rank == 0: dist.barrier() print("second after barrier{}\n".format(local_rank)) print("{} exit".format(local_rank))
其输入是:
first before barrier1first before barrier0first after barrier0inter 0second before barrier0second after barrier00 exitfirst after barrier1inter 1second before barrier1second after barrier11 exitProcess finished with exit code 0
能够看到,有几个细节:
barrier
之前,所有的操作都是各 GPU 过程本人输入本人的。- 因为
local_rank=0
执行到本人可见的barrier
两头会输入多个,而local_rank=1
则只有一条first before barrier1
。
- 因为
second before barrier0
之后,0 号执行到了属于本人的barrier
,这回让使得其余过程不再阻塞,开始失常运行。因为两头操作的工夫,所以先是 0 号输入本人的second after barrier0
并随之退出,之后 1 号也接着开始输入本人的后果。
这里有一点值得注意,不同过程的 barrier
实际上是相互对应的,必须所有过程都执行一次barrier
,才会从新放行失常后退。
对于第二段代码:
def ddp_test_v1(local_rank, word_size): # Initializes the distributed backend which will take care of sychronizing nodes/GPUs dist.init_process_group(backend="nccl", world_size=word_size, rank=local_rank) if local_rank != 0: print("1 before barrier{}\n".format(local_rank)) start = time.time() time.sleep(5) dist.barrier() print(time.time() - start) print("1 after barrier{}\n".format(local_rank)) dist.barrier() print("1 after barrier{}\n".format(local_rank)) else: print("0 before barrier{}\n".format(local_rank)) start = time.time() dist.barrier() print(time.time() - start) print("0 after barrier{}\n".format(local_rank)) print("0 after barrier{}\n".format(local_rank)) dist.barrier() print("0 after barrier{}\n".format(local_rank)) print("{} exit".format(local_rank))
则是有输入:
1 before barrier10 before barrier05.0021173954010015.0021262168884281 after barrier10 after barrier00 after barrier00 after barrier00 exit1 after barrier11 exitProcess finished with exit code 0
能够看到一个重要的点,就是这两处 print(time.time() - start)
的输入是根本一样的,不论后面延时多少, barrier
前面的工夫都是依照最长达到并执行 barrier
的间隔时间来的。这个更体现了不同过程 barrier
之间的相互限度关系。而 0 达到本人的第二个 barrier
之后,会使得 1 号再次运行。然而此时 0 是先完结的。
另外,能够验证,如果某个编号对应的代码中的两个 barrier
之中的一个,那么另一个就会陷入有限期待之中。
例如:
def ddp_test_v1(local_rank, word_size): # Initializes the distributed backend which will take care of sychronizing nodes/GPUs dist.init_process_group(backend="nccl", world_size=word_size, rank=local_rank) if local_rank != 0: print("1 before barrier{}\n".format(local_rank)) start = time.time() time.sleep(5) dist.barrier() print(time.time() - start) print("1 after barrier{}\n".format(local_rank)) # dist.barrier() print("1 after barrier{}\n".format(local_rank)) else: print("0 before barrier{}\n".format(local_rank)) start = time.time() time.sleep(3) dist.barrier() print(time.time() - start) print("0 after barrier{}\n".format(local_rank)) print("0 after barrier{}\n".format(local_rank)) dist.barrier() print("0 after barrier{}\n".format(local_rank)) print("{} exit".format(local_rank))
输入:
0 before barrier01 before barrier15.0024585723876951 after barrier11 after barrier11 exit5.0024738311767580 after barrier00 after barrier0Traceback (most recent call last): File "/home/lart/Coding/SODBetterProj/tools/dist_experiment_test.py", line 67, in <module> main() File "/home/lart/Coding/SODBetterProj/tools/dist_experiment_test.py", line 63, in main mp.spawn(ddp_test_v1, args=(world_size,), nprocs=world_size, join=True) File "/home/lart/miniconda3/envs/pt17/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 199, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method='spawn') File "/home/lart/miniconda3/envs/pt17/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 157, in start_processes while not context.join(): File "/home/lart/miniconda3/envs/pt17/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 75, in join ready = multiprocessing.connection.wait( File "/home/lart/miniconda3/envs/pt17/lib/python3.8/multiprocessing/connection.py", line 931, in wait ready = selector.select(timeout) File "/home/lart/miniconda3/envs/pt17/lib/python3.8/selectors.py", line 415, in select fd_event_list = self._selector.poll(timeout)KeyboardInterruptProcess finished with exit code 137 (interrupted by signal 9: SIGKILL)
会在第二个 barrier
处有限期待上来。
这一特点在这个答复中也被提到了:
when a process encounters a barrier it will block the position of the barrier is not important (not all processes have to enter the same if-statement, for instance) a process is blocked by a barrier until all processes have encountered a barrier, upon which the barrier is lifted for all processes
https://stackoverflow.com/a/59766443
重要的参考资料
原创[PyTorch] DDP 系列
- 第一篇:https://zhuanlan.zhihu.com/p/178402798
- 第二篇:https://zhuanlan.zhihu.com/p/187610959
- 第三篇:https://zhuanlan.zhihu.com/p/250471767
PyTorch 单机多 GPU 训练方法与原理整顿
- https://github.com/jia-zhuang/pytorch-multi-gpu-training
Pytorch 分布式训练(图示十分敌对)
- https://zhuanlan.zhihu.com/p/76638962
Distribution is all you need(丰盛全面)
- https://github.com/tczhangzhi/pytorch-distributed