对于linux零拷贝技术能够先看下后面一篇文章IO零拷贝,因为java里的零拷贝底层也是依赖的操作系统实现,须要阐明下,Linux提供的零拷贝技术Java并不是全反对,只反对2种:mmap内存映射、sendfile,别离是由FileChannel.map()与FileChannel.transferTo()/transferFrom()实现。
波及的类次要有FileChannel,MappedByteBuffer,DirectByteBuffer。
MappedByteBuffer
先看下ChannelFile的map办法:
public abstract MappedByteBuffer map(MapMode mode, long position, long size)throws IOException;
- mode 限定内存映射区域(MappedByteBuffer)对内存映像文件的拜访模式,有只读,读写与写时拷贝三种。
- position 文件映射的起始地址,对应内存映射区域的首地址
- size 文件映射的字节长度,从position往后的字节数,对应内存映射区域的大小
map办法正是NIO基于内存映射(mmap)这种零拷贝形式的一种实现形式。办法返回一个MappedByteBuffer,MappedByteBuffer继承于ByteBuffer,扩大的办法有force(),load(),isLoad()这三个办法:
- force(),对于处于READ_WRITE模式下的缓冲区,将对缓冲区内容共性强制刷新到本地文件
- load(),将缓冲区的内容载入物理内存中,并返回这个缓冲区的援用
- isLoad(),判断缓冲区的内容是否在物理内存中,是返回true,不是返回false
看个示例
public class MappedByteBufferDemo { public static final String CONTENT = "zero copy by MappedByteBuffer"; public static final String FILE_NAME= "zero_copy/mmap.txt"; public static final String CHARSET = "UTF-8"; /** * 写文件数据:关上文件通道 fileChannel 并提供读权限、写权限和数据清空权限, * 通过 fileChannel 映射到一个可写的内存缓冲区 mappedByteBuffer, * 将指标数据写入 mappedByteBuffer,通过 force() 办法把缓冲区更改的内容强制写入本地文件。 */ @Test public void writeToFileByMappedByteBuffer(){ //文件门路依据理论来定,我是放在我的项目的resources目录下 Path path = Paths.get(getClass().getResource("/"+FILE_NAME).getPath()); byte[] bytes = CONTENT.getBytes(Charset.forName(CHARSET)); try(FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.READ, StandardOpenOption.WRITE,StandardOpenOption.TRUNCATE_EXISTING)){ MappedByteBuffer mappedByteBuffer = fileChannel.map(FileChannel.MapMode.READ_WRITE, 0, bytes.length); if (mappedByteBuffer != null){ mappedByteBuffer.put(bytes); mappedByteBuffer.force(); } }catch (IOException e){ e.printStackTrace(); } } /** * * 读文件数据:关上文件通道 fileChannel 并提供只读权限,通过 fileChannel 映射到一个 * 只可读的内存缓冲区 mappedByteBuffer,读取 mappedByteBuffer 中的字节数组即可失去文件数据。 */ @Test public void readFileFromMappedByteBuffer(){ Path path = Paths.get(getClass().getResource("/"+FILE_NAME).getPath()); int length = CONTENT.getBytes(Charset.forName(CHARSET)).length; try(FileChannel fileChannel = FileChannel.open(path,StandardOpenOption.READ)){ MappedByteBuffer mappedByteBuffer = fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, length); if (mappedByteBuffer != null){ byte[] bytes = new byte[length]; mappedByteBuffer.get(bytes); String content = new String(bytes, StandardCharsets.UTF_8); assertEquals(content,"zero copy by MappedByteBuffer"); } }catch (IOException e){ e.printStackTrace(); } }}
这里咱们再来看看map()办法,它是在FileChannelImpl类里实现的,来看下外围代码:
public MappedByteBuffer map(MapMode mode, long position, long size) throws IOException { int pagePosition = (int)(position % allocationGranularity); long mapPosition = position - pagePosition; long mapSize = size + pagePosition; try { //第一次文件映射导致OOM,手动触发垃圾回收,100S后再尝试映射,如果再失败则抛出异样 addr = map0(imode, mapPosition, mapSize); } catch (OutOfMemoryError x) { System.gc(); try { Thread.sleep(100); } catch (InterruptedException y) { Thread.currentThread().interrupt(); } try { //addr为内存映射区域的起始地址,通过起始地址+偏移量能够获取指定内存数据。底层是JNI调用C实现 addr = map0(imode, mapPosition, mapSize); } catch (OutOfMemoryError y) { throw new IOException("Map failed", y); } } int isize = (int)size; Unmapper um = new Unmapper(addr, mapSize, isize, mfd); //通过Util工人反射创立一个DirectByteBuffer实例 if ((!writable) || (imode == MAP_RO)) { return Util.newMappedByteBufferR(isize, addr + pagePosition, mfd, um); } else { return Util.newMappedByteBuffer(isize, addr + pagePosition, mfd, um); }}
总结:
- MappedByteBuffer底层应用DirectByteBuffer申请堆外虚拟内存,调配的内存不受JVM的-Xmx限度
- MappedByteBuffer关上的文件只有在垃圾回收的时候才会被敞开
- MappedByteBuffer映射的内存须要用户程序通过java反射调用sum.misc.Cleaner的clean()办法手动开释
DirectByteBuffer
DirectByteBuffer能够调配堆外内存,它是通过Unsafe本地办法allocateMemory()进行调配的,底层调用的是操作系统的malloc()函数。创立DirectByteBuffer对象时还会创立一个Deallocate线程,并通过Cleaner的freeMemory()办法对间接内存进行回收操作,freeMomery()底层调用的是操作系统的free()函数。
DirectByteBuffer(int cap) { super(-1, 0, cap, cap); boolean pa = VM.isDirectMemoryPageAligned(); int ps = Bits.pageSize(); long size = Math.max(1L, (long)cap + (pa ? ps : 0)); Bits.reserveMemory(size, cap); long base = 0; try { base = unsafe.allocateMemory(size); } catch (OutOfMemoryError x) { Bits.unreserveMemory(size, cap); throw x; } unsafe.setMemory(base, size, (byte) 0); if (pa && (base % ps != 0)) { address = base + ps - (base & (ps - 1)); } else { address = base; } cleaner = Cleaner.create(this, new Deallocator(base, size, cap)); att = null;}
DirectByteBuffer是MappedByteBuffer的子类,之前咱们有提到的FileChannel#map()办法中
Util.newMappedByteBuffer(isize, addr + pagePosition, mfd, um);
它底层就是通过反射创立了DirectByteBuffer实例,而后调配的堆外内存:
static MappedByteBuffer newMappedByteBuffer(int size, long addr, FileDescriptor fd, Runnable unmapper) { MappedByteBuffer dbb; if (directByteBufferConstructor == null) initDBBConstructor(); try { dbb = (MappedByteBuffer)directByteBufferConstructor.newInstance( new Object[] { new Integer(size), new Long(addr), fd, unmapper }); } catch (InstantiationException | IllegalAccessException | InvocationTargetException e) { throw new InternalError(e); } return dbb;}private static void initDBBRConstructor() { AccessController.doPrivileged(new PrivilegedAction<Void>() { public Void run() { try { Class<?> cl = Class.forName("java.nio.DirectByteBufferR"); Constructor<?> ctor = cl.getDeclaredConstructor( new Class<?>[] { int.class, long.class, FileDescriptor.class, Runnable.class }); ctor.setAccessible(true); directByteBufferRConstructor = ctor; } catch (ClassNotFoundException | NoSuchMethodException | IllegalArgumentException | ClassCastException x) { throw new InternalError(x); } return null; }});}
DirectByteBuffer自身也有文件内存映射的性能,另外还提供了MappedByteBuffer所没有的能够在内存映像文件进行随机读取get()与写入write()操作。
public byte get() { return ((unsafe.getByte(ix(nextGetIndex()))));}public byte get(int i) { return ((unsafe.getByte(ix(checkIndex(i)))));}public ByteBuffer put(byte x) { unsafe.putByte(ix(nextPutIndex()), ((x))); return this;}public ByteBuffer put(int i, byte x) { unsafe.putByte(ix(checkIndex(i)), ((x))); return this;}
内存映像文件的随机读写都是借助 ix() 办法实现定位的, ix() 办法通过内存映射空间的内存首地址(address)和给定偏移量 i 计算出指针地址,而后由 unsafe 类的 get() 和 put() 办法和对指针指向的数据进行读取或写入。
总结:
- DirectByteBuffer是MappedByteBuffer子类,它自身有文件映射内存性能,同时它还具备MappedByteBuffer所没有的在内存映像文件进行随机读取get()与写入write()性能。
- DirectByteBuffer是通过Unsafe本地办法申请的堆外内存,回收时须要应用程序自身应用Cleaner类进行回收
FileChannel
FileChannel是一个用于文件读写,映射和操作的通道,它定义了transferFrom()和transferTo()两个形象办法,它通过在通道和通道之间建设连贯实现数据传输。
//通过FileChannel将文件外面的数据写入一个WritableByteChannel的目标通道public abstract long transferTo(long position, long count, WritableByteChannel target) throws IOException;//将一个源通道ReadableByteChannel中的数据读取到以后FileChannel的文件外面public abstract long transferFrom(ReadableByteChannel src, long position, long count) throws IOException;
示例:
public class FileChannelDemo { public static final String CONTENT = "zero copy by FileChannel"; //两个文件放在我的项目的resources目录下 public static final String SOURCE_FILE = "/zero_copy/source.txt"; public static final String TARGET_FILE = "/zero_copy/target.txt"; public static final String CHARSET = "UTF-8"; //先将内容写入source.txt @Before public void setup(){ Path path = Paths.get(getClass().getResource(SOURCE_FILE).getPath()); byte[] bytes = CONTENT.getBytes(Charset.forName(CHARSET)); try(FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.READ, StandardOpenOption.WRITE,StandardOpenOption.TRUNCATE_EXISTING)){ fileChannel.write(ByteBuffer.wrap(bytes)); }catch (IOException e){ e.printStackTrace(); } } //通过transferTo将fromChannel上的数据拷贝到toChannel @Test public void transferTo()throws Exception{ try(FileChannel fromChannel = new RandomAccessFile(getClass().getResource(SOURCE_FILE).getPath() ,"rw").getChannel(); FileChannel toChannel = new RandomAccessFile(getClass().getResource(TARGET_FILE).getPath() ,"rw").getChannel()){ long position = 0L; long offset = fromChannel.size(); fromChannel.transferTo(position,offset,toChannel); } } //通过transferFrom将fromChannel中的数据拷贝到toChannel @Test public void transferFrom()throws Exception{ try(FileChannel fromChannel = new RandomAccessFile(getClass().getResource(SOURCE_FILE).getPath() ,"rw").getChannel(); FileChannel toChannel = new RandomAccessFile(getClass().getResource(TARGET_FILE).getPath() ,"rw").getChannel()){ long position = 0L; long offset = fromChannel.size(); toChannel.transferFrom(fromChannel,position,offset); } }}
transferTo()与transferFrom()底层都是基于sendfile实现数据传输的。上面以transferTo()源码为例进行阐明:
public long transferTo(long position, long count, WritableByteChannel target) throws IOException { // 计算文件的大小 long sz = size(); // 校验起始地位 if (position > sz) return 0; int icount = (int)Math.min(count, Integer.MAX_VALUE); // 校验偏移量 if ((sz - position) < icount) icount = (int)(sz - position); long n; //内核如果反对sendfile,则应用transferToDirectly if ((n = transferToDirectly(position, icount, target)) >= 0) return n; //内核不反对sendfile,则应用mmap的形式 if ((n = transferToTrustedChannel(position, icount, target)) >= 0) return n; //内核不反对sendfile与mmap,则应用传统的IO形式实现读写 return transferToArbitraryChannel(position, icount, target);}//先获取文件描述符targetFD,接着获取同步锁后执行transferToDirectlyInternalprivate long transferToDirectly(long position, int icount, WritableByteChannel target) throws IOException { // 省略从target获取targetFD的过程 if (nd.transferToDirectlyNeedsPositionLock()) { synchronized (positionLock) { long pos = position(); try { return transferToDirectlyInternal(position, icount, target, targetFD); } finally { position(pos); } } } else { return transferToDirectlyInternal(position, icount, target, targetFD); }}//transferToDirectlyInternal会调用本地办法transferTo0()尝试以sendfile的形式传输数据private long transferToDirectlyInternal(long position, int icount, WritableByteChannel target, FileDescriptor targetFD) throws IOException { assert !nd.transferToDirectlyNeedsPositionLock() || Thread.holdsLock(positionLock); long n = -1; int ti = -1; try { begin(); ti = threads.add(); if (!isOpen()) return -1; do { n = transferTo0(fd, position, icount, targetFD); } while ((n == IOStatus.INTERRUPTED) && isOpen()); if (n == IOStatus.UNSUPPORTED_CASE) { if (target instanceof SinkChannelImpl) pipeSupported = false; if (target instanceof FileChannelImpl) fileSupported = false; return IOStatus.UNSUPPORTED_CASE; } if (n == IOStatus.UNSUPPORTED) { transferSupported = false; return IOStatus.UNSUPPORTED; } return IOStatus.normalize(n); } finally { threads.remove(ti); end (n > -1); }}
总结:
- FileChannel的transferTo()与transferFrom()底层都是基于sendfile实现数据传输的
- transferTo办法外部会判断零碎是否反对sendfile,如果不反对会应用mmap的形式;如果零碎也不反对mmap的形式,则会应用传统的IO形式进行数据传输
- transferToyyfi会调用本地办法transferTo0()
Netty的零拷贝实现
netty的零拷贝次要是通过对java.nio.channels.FileChannel的tranferTo()的包装,在文件传输时将文件缓冲区的数据间接发送到目标通道(Channel)。
- 应用Direct Buffers,Netty采纳间接缓冲区间接在内存区域调配空间,防止数据的屡次拷贝
- 应用CompositeByteBuf,它保留了多个ByteBuf的援用,对外提供对立封装后的ByteBuf接口,防止数据拷贝
- Netty的文件传输类DefaultFileRegion通过调用FileChannel.transferTo()办法实现零拷贝,文件缓冲区的数据会间接发送给指标Channel
九,RocketMQ与Kafka里的零拷贝
mmap应用的是非阻塞式IO,基于多路复用解决,实用于小数据块/高频率的IO传输,大块数据会阻塞多路复用线程,sendfile应用的是阻塞式IO,实用于大数据块/低频率的IO传输。
零拷贝形式 | 长处 | 毛病 | |
---|---|---|---|
RocketMQ | mmap+write | 实用于小块文件传输,频繁调用时效率高 | 不能很好利用DMA形式,会比sendfile多耗费CPU,内存安全性管制简单,须要防止JVM Crash问题 |
Kafka | sendfile | 能够利用DMA形式,耗费CPU较少,大块文件传输效率高,无内存平安问题 | 小块文件效率低于mmap形式,只能是BIO形式传输,不能应用NIO形式 |
总结:
- FileChannel调用map()办法最终是应用DirectByteBuffer映射的堆外内存,而后应用MappedByteBuffer进行读写,这就是mmap实现的形式
- FileChannel调用transferTo()办法时底层应用本地办法transferTo0()实现的sendfile办法
- Netty,RocketMQ,Kafka里的零拷贝也简略提了一下
本文次要参考的文章:
Java NIO-零拷贝实现
深刻分析Linux IO原理和几种零拷贝机制的实现