浏览本文须要的背景知识点:对数几率回归算法(一)、共轭梯度法、一点点编程常识

一、引言

  接上一篇对数几率回归算法(一),其中介绍了优化对数几率回归代价函数的两种办法——梯度降落法(Gradient descent)与牛顿法(Newton's method)。但当应用一些第三方机器学习库时会发现,个别都不会简略的间接应用上述两种办法,而是用的是一些优化版本或是算法的变体。例如后面介绍的在 scikit-learn 中可选的求解器如下表所示:

求解器/solver算法
sag随机均匀梯度降落法(Stochastic Average Gradient/SAG)
saga随机均匀梯度降落减速法(SAGA)
lbfgsL-BFGS算法(Limited-memory Broyden–Fletcher–Goldfarb–Shanno/L-BFGS)
newton-cg牛顿-共轭梯度法(Newton-Conjugate Gradient)

  上面就来一一介绍上述的这些算法,为什么个别第三方库中不间接梯度降落法与牛顿法,这两个原始算法存在什么缺点?因为笔者能力无限,上面算法只给出了迭代公式,其迭代公式的起源无奈在此具体推导进去,感兴趣的读者可参考对应论文中的证实。

二、梯度降落法

梯度降落法(Gradient Descent/GD)

  梯度降落原始算法,也被称为批量梯度降落法(Batch gradient descent/BGD),将整个数据集作为输出来计算梯度。

$$w=w-\eta \nabla_{w} \operatorname{Cost}(w)$$

  该算法的次要毛病是应用了整个数据集,当数据集很大的时候,计算梯度时可能会异样的耗时。

随机梯度降落法(Stochastic Gradient Descent/SGD)

  每次迭代更新只随机的解决某一个数据,而不是整个数据集。

$$w=w-\eta \nabla_{w} \operatorname{Cost}\left(w, X_{i}, y_{i}\right) \quad i \in[1, N]$$

  该算法因为是随机一个数据点,代价函数并不是始终降落,而是会上下稳定,调整步长使得代价函数的后果整体呈降落趋势,所以收敛速率没有批量梯度降落快。

小批量梯度降落法(Mini-batch Gradient Descent/MBGD)

  小批量梯度降落法联合了下面两种算法,在计算梯度是既不是应用整个数据集,也不是每次随机选其中一个数据,而是一次应用一部分数据来更新。

$$w=w-\eta \nabla_{w} \operatorname{Cost}\left(w, X_{(i: i+k)}, y_{(i: i+k)}\right) \quad i \in[1, N]$$

随机均匀梯度降落法1(Stochastic Average Gradient/SAG)

  随机均匀梯度降落法是对随机梯度降落法的优化,因为SGD的随机性,导致其收敛速度较迟缓。SAG则是通过记录上一次地位的梯度记录,使得可能看到更多的信息。

$$\begin{aligned}w_{k+1} &=w_{k}-\frac{\eta}{N} \sum_{i=1}^{N}\left(d_{i}\right)_{k} \\d_{k} &=\left\{\begin{array}{ll}\nabla_{w} \operatorname{Cost}\left(w_{k}, X_{i}, y_{i}\right) & i=i_{k} \\d_{k-1} & i \neq i_{k}\end{array}\right.\end{aligned}$$

方差缩减随机梯度降落法2(Stochastic Variance Reduced Gradient/SVRG)

  方差缩减随机梯度降落法是对随机梯度降落法的另一种优化,因为SGD的收敛问题是因为梯度的方差假如有一个常数的上界,SVRG的做法是通过减小这个方差来使得收敛过程更加稳固。

$$w_{k+1}=w_{k}-\eta\left(\nabla_{w} \operatorname{Cost}\left(w_{k}, X_{i}, y_{i}\right)-\nabla_{w} \operatorname{Cost}\left(\hat{w}, X_{i}, y_{i}\right)+\frac{1}{N} \sum_{j=1}^{N} \nabla_{w} \operatorname{Cost}\left(\hat{w}, X_{j}, y_{j}\right)\right)$$

随机均匀梯度降落法变体3(SAGA)

  SAGA是对随机均匀梯度降落法的优化,联合了方差缩减随机梯度降落法的办法。

$$w_{k+1}=w_{k}-\eta\left(\nabla_{w} \operatorname{Cost}\left(w_{k}, X_{i}, y_{i}\right)-\nabla_{w} \operatorname{Cost}\left(w_{k-1}, X_{i}, y_{i}\right)+\frac{1}{N} \sum_{j=1}^{N} \nabla_{w} \operatorname{Cost}\left(w, X_{j}, y_{j}\right)\right)$$

三、牛顿法

牛顿法(Newton Method)

  牛顿法原始版本,将整个数据集作为输出来计算出梯度和黑塞矩阵后求出降落的方向

$$w_{k+1}=w_{k}-\eta\left(H^{-1} \nabla_{w} \operatorname{Cost}\left(w_{k}\right)\right)$$

  该算法的次要毛病是需要求黑塞矩阵和它的逆矩阵,当 x 的维度过多的时候,求黑塞矩阵的过程会异样的艰难。

DFP法4(Davidon–Fletcher–Powell)

  DFP法是一个拟牛顿法,算法如下:

$$\begin{aligned}g_{k} &=\nabla_{w} \operatorname{Cost}\left(w_{k}\right) \\d_{k} &=-D_{k} g_{k} \\s_{k} &=\eta d_{k} \\w_{k+1} &=w_{k}+s_{k} \\g_{k+1} &=\nabla_{w} \operatorname{Cost}\left(w_{k+1}\right) \\y_{k} &=g_{k+1}-g_{k} \\D_{k+1} &=D_{k}+\frac{s_{k} s_{k}^{T}}{s_{k}^{T} y_{k}}-\frac{D_{k} y_{k} y_{k}^{T} D_{K}}{y_{k}^{T} D_{k} y_{k}}\end{aligned}$$

  能够看到DFP不再间接求黑塞矩阵,而是通过一次一次的迭代来失去近似值,其中D为黑塞矩阵的逆矩阵的近似。

BFGS法5(Broyden–Fletcher–Goldfarb–Shanno)

  BFGS法同样是一个拟牛顿法,根本步骤与DFP法截然不同,算法如下:

$$\begin{aligned}g_{k} &=\nabla_{w} \operatorname{Cost}\left(w_{k}\right) \\d_{k} &=-D_{k} g_{k} \\s_{k} &=\eta d_{k} \\w_{k+1} &=w_{k}+s_{k+1} \\g_{k+1} &=\nabla_{w} \operatorname{Cost}\left(w_{k+1}\right) \\y_{k} &=g_{k+1}-g_{k} \\D_{k+1} &=\left(I-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}\right) D_{k}\left(I-\frac{y_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}\right)+\frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}\end{aligned}$$

  能够看到BFGS法的惟一区别只是对黑塞矩阵的近似办法不同,其中D为黑塞矩阵的逆矩阵的近似。

L-BFGS法6(Limited-memory Broyden–Fletcher–Goldfarb–Shanno)

  因为BFGS法须要存储一个近似的黑塞矩阵,当 x 的维度过多的时候,这个黑塞矩阵的占用内存会异样的大,L-BFGS法令是对BFGS法再一次的近似,算法如下:

$$\begin{aligned}g_{k} &=\nabla_{w} \operatorname{Cost}\left(w_{k}\right) \\d_{k} &=-\operatorname{calcDirection}\left(s_{k-m: k-1}, y_{k-m: k-1}, \rho_{k-m: k-1}, g_{k}\right) \\s_{k} &=\eta d_{k} \\w_{k+1} &=w_{k}+s_{k} \\g_{k+1} &=\nabla_{w} \operatorname{Cost}\left(w_{k+1}\right) \\y_{k} &=g_{k+1}-g_{k} \\\rho_{k} &=\frac{1}{y_{k}^{T} s_{k}}\end{aligned}$$

  能够看到L-BFGS法不再间接保留这个近似的黑塞矩阵,而是当要用到时间接通过一组向量计算出来,达到节俭内存的目标。计算方向的办法可参考上面代码中的实现。

牛顿共轭梯度法(Newton-Conjugate Gradient/Newton-CG)

  牛顿共轭梯度法是对牛顿法的优化,算法如下:

$$\begin{aligned}g_{k} &=\nabla_{w} \operatorname{Cost}\left(w_{k}\right) \\H_{k} &=\nabla_{w}^{2} \operatorname{Cost}\left(w_{k}\right) \\\Delta w &=c g\left(g_{k}, H_{k}\right) \\w_{k+1} &=w_{k}-\Delta w\end{aligned}$$

  能够看到牛顿共轭梯度法不再求黑塞矩阵的逆矩阵,而是通过共轭梯度法(Conjugate Gradient)间接求出w。对于共轭梯度法举荐看参考文献中的文章7,具体介绍了该算法的原理与利用。

四、代码实现

应用 Python 实现对数几率回归算法(随机梯度降落法):

import numpy as npdef logisticRegressionSGD(X, y, max_iter=100, tol=1e-4, step=1e-1):   w = np.zeros(X.shape[1])   xy = np.c_[X.reshape(X.shape[0], -1), y.reshape(X.shape[0], 1)]   for it in range(max_iter):       s = step / (np.sqrt(it + 1))       np.random.shuffle(xy)       X_new, y_new = xy[:, :-1], xy[:, -1:].ravel()       for i in range(0, X.shape[0]):           d = dcost(X_new[i], y_new[i], w)           if (np.linalg.norm(d) <= tol):               return w           w = w - s * d   return w

应用 Python 实现对数几率回归算法(批量随机梯度降落法):

import numpy as npdef logisticRegressionMBGD(X, y, batch_size=50, max_iter=100, tol=1e-4, step=1e-1):    w = np.zeros(X.shape[1])    xy = np.c_[X.reshape(X.shape[0], -1), y.reshape(X.shape[0], 1)]    for it in range(max_iter):        s = step / (np.sqrt(it + 1))        np.random.shuffle(xy)        for start in range(0, X.shape[0], batch_size):            stop = start + batch_size            X_batch, y_batch = xy[start:stop, :-1], xy[start:stop, -1:].ravel()            d = dcost(X_batch, y_batch, w)            if (np.linalg.norm(p_avg) <= tol):                return w            w = w - s * d    return w

应用 Python 实现对数几率回归算法(随机均匀梯度降落法):

import numpy as npdef logisticRegressionSAG(X, y, max_iter=100, tol=1e-4, step=1e-1):   w = np.zeros(X.shape[1])   p = np.zeros(X.shape[1])   d_prev = np.zeros(X.shape)   for it in range(max_iter):       s = step / (np.sqrt(it + 1))       for it in range(X.shape[0]):           i = np.random.randint(0, X.shape[0])           d = dcost(X[i], y[i], w)           p = p - d_prev[i] + d           d_prev[i] = d           p_avg = p / X.shape[0]           if (np.linalg.norm(p_avg) <= tol):               return w           w = w - s * p_avg   return w

应用 Python 实现对数几率回归算法(方差缩减随机梯度降落法):

import numpy as npdef logisticRegressionSVRG(X, y, max_iter=100, m = 100, tol=1e-4, step=1e-1):    w = np.zeros(X.shape[1])    for it in range(max_iter):        s = step / (np.sqrt(it + 1))        g = np.zeros(X.shape[1])        for i in range(X.shape[0]):             g = g + dcost(X[i], y[i], w)        g = g / X.shape[0]        tempw = w        for it in range(m):            i = np.random.randint(0, X.shape[0])            d_tempw = dcost(X[i], y[i], tempw)            d_w = dcost(X[i], y[i], w)            d = d_tempw - d_w + g            if (np.linalg.norm(d) <= tol):                break            tempw = tempw - s * d        w = tempw    return w

应用 Python 实现对数几率回归算法(SAGA):

import numpy as npdef logisticRegressionSAGA(X, y, max_iter=100, tol=1e-4, step=1e-1):   w = np.zeros(X.shape[1])   p = np.zeros(X.shape[1])   d_prev = np.zeros(X.shape)   for i in range(X.shape[0]):        d_prev[i] = dcost(X[i], y[i], w)   for it in range(max_iter):       s = step / (np.sqrt(it + 1))       for it in range(X.shape[0]):           i = np.random.randint(0, X.shape[0])           d = dcost(X[i], y[i], w)           p = d - d_prev[i] + np.mean(d_prev, axis=0)            d_prev[i] = d           if (np.linalg.norm(p) <= tol):               return w           w = w - s * p   return w

应用 Python 实现对数几率回归算法(DFP):

import numpy as npdef logisticRegressionDPF(X, y, max_iter=100, tol=1e-4):   w = np.zeros(X.shape[1])   D_k = np.eye(X.shape[1])   g_k = dcost(X, y, w)   for it in range(max_iter):       d_k = -D_k.dot(g_k)       s = lineSearch(X, y, w, d_k, 0, 10)       s_k = s * d_k       w = w + s_k       g_k_1 = dcost(X, y, w)       if (np.linalg.norm(g_k_1) <= tol):           return w       y_k = (g_k_1 - g_k).reshape(-1, 1)       s_k = s_k.reshape(-1, 1)       D_k = D_k + s_k.dot(s_k.T) / s_k.T.dot(y_k) - D_k.dot(y_k).dot(y_k.T).dot(D_k) / y_k.T.dot(D_k).dot(y_k)       g_k = g_k_1   return w

应用 Python 实现对数几率回归算法(BFGS):

import numpy as npdef logisticRegressionBFGS(X, y, max_iter=100, tol=1e-4):    w = np.zeros(X.shape[1])    D_k = np.eye(X.shape[1])    g_k = dcost(X, y, w)    for it in range(max_iter):        d_k = -D_k.dot(g_k)        s = lineSearch(X, y, w, d_k, 0, 10)        s_k = s * d_k        w = w + s_k        g_k_1 = dcost(X, y, w)        if (np.linalg.norm(g_k_1) <= tol):            return w        y_k = (g_k_1 - g_k).reshape(-1, 1)        s_k = s_k.reshape(-1, 1)        a = s_k.dot(y_k.T)        b = y_k.T.dot(s_k)        c = s_k.dot(s_k.T)        D_k = (np.eye(X.shape[1]) - a / b).dot(D_k).dot((np.eye(X.shape[1]) - a.T / b)) + c / b        g_k = g_k_1    return w

应用 Python 实现对数几率回归算法(L-BFGS):

import numpy as npdef calcDirection(ss, ys, rhos, g_k, m, k):    delta = 0    L = k    q = g_k.reshape(-1, 1)    if k > m:        delta = k - m        L = m    alphas = np.zeros(L)    for i in range(L - 1, -1, -1):        j = i + delta        alpha = rhos[j].dot(ss[j].T).dot(q)        alphas[i] = alpha        q = q - alpha * ys[j]    r = np.eye(g_k.shape[0]).dot(q)    for i in range(0, L):        j = i + delta        beta = rhos[j].dot(ys[j].T).dot(r)        r = r + (alphas[i] - beta) * ss[j]    return -r.ravel()def logisticRegressionLBFGS(X, y, m=100, max_iter=100, tol=1e-4):    w = np.zeros(X.shape[1])    g_k = dcost(X, y, w)    d_k = -np.eye(X.shape[1]).dot(g_k)    ss = []    ys = []    rhos = []    for it in range(max_iter):        d_k = calcDirection(ss, ys, rhos, g_k, m, it)        s = lineSearch(X, y, w, d_k, 0, 1)        s_k = s * d_k        w = w + s_k        g_k_1 = dcost(X, y, w)        if (np.linalg.norm(g_k_1) <= tol):            return w        y_k = (g_k_1 - g_k).reshape(-1, 1)        s_k = s_k.reshape(-1, 1)        ss.append(s_k)        ys.append(y_k)        rhos.append(1 / (y_k.T.dot(s_k)))        g_k = g_k_1    return w

应用 Python 实现对数几率回归算法(牛顿共轭梯度法):

import numpy as npdef cg(H, g, max_iter=100, tol=1e-4):   """   共轭梯度法   H * deltaw = g   """   deltaw = np.zeros(g.shape[0])   i = 0   r = g   d = r   delta = np.dot(r, r)   delta_0 = delta   while i < max_iter:       q = H.dot(d)       alpha = delta / (np.dot(d, q))       deltaw = deltaw + alpha * d       r = r - alpha * q       delta_prev = delta       delta = np.dot(r, r)       if delta <= tol * tol * delta_0:           break       beta = delta / delta_prev       d = r + beta * d       i = i + 1   return deltawdef logisticRegressionNewtonCG(X, y, max_iter=100, tol=1e-4, step = 1.0):   """   对数几率回归,应用牛顿共轭梯度法(Newton-Conjugate Gradient)   args:       X - 训练数据集       y - 指标标签值       max_iter - 最大迭代次数       tol - 变动量容忍值   return:       w - 权重系数   """   # 初始化 w 为零向量   w = np.zeros(X.shape[1])   # 开始迭代   for it in range(max_iter):       # 计算梯度       d = dcost(X, y, w)       # 当梯度足够小时,完结迭代       if np.linalg.norm(d) <= tol:           break       # 计算黑塞矩阵       H = ddcost(X, y, w)       # 应用共轭梯度法计算w        deltaw = cg(H, d)       w = w - step * deltaw   return w

五、第三方库实现

scikit-learn8 实现对数几率回归(随机均匀梯度降落法):

from sklearn.linear_model import LogisticRegression# 初始化对数几率回归器,无正则化reg = LogisticRegression(penalty="none", solver="sag")# 拟合线性模型reg.fit(X, y)# 权重系数w = reg.coef_# 截距b = reg.intercept_

scikit-learn8实现对数几率回归(SAGA):

from sklearn.linear_model import LogisticRegression# 初始化对数几率回归器,无正则化reg = LogisticRegression(penalty="none", solver="saga")# 拟合线性模型reg.fit(X, y)# 权重系数w = reg.coef_# 截距b = reg.intercept_

scikit-learn8实现对数几率回归(L-BFGS):

from sklearn.linear_model import LogisticRegression# 初始化对数几率回归器,无正则化reg = LogisticRegression(penalty="none", solver="lbfgs")# 拟合线性模型reg.fit(X, y)# 权重系数w = reg.coef_# 截距b = reg.intercept_

scikit-learn8实现对数几率回归(牛顿共轭梯度法):

from sklearn.linear_model import LogisticRegression# 初始化对数几率回归器,无正则化reg = LogisticRegression(penalty="none", solver="newton-cg")# 拟合线性模型reg.fit(X, y)# 权重系数w = reg.coef_# 截距b = reg.intercept_

七、思维导图

八、参考文献

  1. https://hal.inria.fr/hal-0086...
  2. https://harkiratbehl.github.i...
  3. https://arxiv.org/pdf/1407.02...
  4. https://en.wikipedia.org/wiki...
  5. https://en.wikipedia.org/wiki...
  6. https://en.wikipedia.org/wiki...
  7. https://flat2010.github.io/20...
  8. https://scikit-learn.org/stab...

残缺演示请点击这里

注:本文力求精确并通俗易懂,但因为笔者也是初学者,程度无限,如文中存在谬误或脱漏之处,恳请读者通过留言的形式批评指正

本文首发于——AI导图,欢送关注