prometheus中的指标t/v数据保留在block/chunks下,label数据保留在block/index下。
对于t/v数据,prometheus采纳Facebook Gorilla论文的压缩形式:
- timestamp: delta-of-delta形式压缩时序点的工夫值;
- value: xor形式压缩时序点的value值;
依照上述压缩形式,能够将一个16byte的时序点压缩成1.37byte,压缩率十分高。
时序点t/v的压缩
1)timestamp压缩
在时序上,相邻两个点的工夫戳的差值个别是固定的,若隔60s pull一次,那么timestamp差值个别都是60s,比方
- p1: 10:00:00,p2: 10:01:00,p3: 10:01:59,p4:10:03:00,p5:10:04:00,p6:10:05:00
- 工夫戳的差值为:60s,59s,61s,60s,60s;
Gorilla论文采纳delta-of-delta形式压缩timestamp:
- 第一个时序点的工夫戳t0,被残缺存储起来;
- 第二个时序点的工夫戳t1,存储delta=t1-t0;
对后续的工夫戳tn,首先计算dod值:delta=(tn - tn-1) - (tn-1 - tn-2);
- 如果dod=0,则应用1bit=“0”存储该工夫戳;
- 如果dod=[-8191, 8192],则先存入“10”作为标识,再用14bit存储该dod值;
- 如果dod=[-65535, 65536],则先存入“110”作为标识,再用17bit存储该dod值;
- 如果dod=[-524287, 524288],则先存入“1110”作为标识,再用20bit存储该dod值;
- 如果dod>524288,则先存入“1111”作为标识,再用64bit存储该dod值;
在实践中发现,95%的timestamp可能依照dod=0的情景进行存储。
2)value压缩
Gorilla论文对时序点value的压缩基于:
- 相邻时序点的value值不会产生显著变动;
- value大多是浮点数,当两个value十分靠近的时候,这两个浮点数的符号位、指数位和尾数局部的前几bit都是雷同的;
value值的压缩算法:
- 第一个时序点的value值不压缩,间接保留;
从第二个点开始,将其value与上一个value进行XOR运算;
- 若XOR运算后果为“0”,则示意前后两个value雷同,仅存入1bit的“0”值即可;
否则,存入1bit值“1”;
- 若XOR后果中非0的局部蕴含在前一个XOR后果中,那么再写入1bit值“0”,而后存入XOR中非0的局部;
- 否则,写入1bit值“1”,用5bit存入XOR中前值0的个数,6bit存入两头非0的长度,最初再存入两头的非0位;
数据显示,大概有60%的value值仅用1bit存储,有30%的value值落入“10”范畴,残余10%的value值落入“11”范畴。
3)压缩示例
输出时序序列值
10:00:00 3.110:01:01 3.210:02:00 3.010:02:59 3.210:03:00 3.1
那么将存入
10:00:00 3.161 3.2 xor 3.1-2(59-61) 3.0 xor 3.20(59-59) 3.2 xor 3.02(61-59) 3.1 xor 3.2
写入t/v的源码剖析
xorAppender负责写入t/v的值,t=int64,v=float64
// tsdb/chunkenc/xor.gofunc (a *xorAppender) Append(t int64, v float64) { var tDelta uint64 num := binary.BigEndian.Uint16(a.b.bytes()) //第一个点,残缺记录t1和v1的值 if num == 0 { buf := make([]byte, binary.MaxVarintLen64) for _, b := range buf[:binary.PutVarint(buf, t)] { a.b.writeByte(b) //写入t1的值 } a.b.writeBits(math.Float64bits(v), 64) //写入v1的值 } else if num == 1 { //第二个点 tDelta = uint64(t - a.t) buf := make([]byte, binary.MaxVarintLen64) for _, b := range buf[:binary.PutUvarint(buf, tDelta)] { a.b.writeByte(b) //写入tDeleta=t2-t1 } a.writeVDelta(v) //写入v2^v1的值 } else { //第三个点及当前的点 tDelta = uint64(t - a.t) dod := int64(tDelta - a.tDelta) //计算dod // Gorilla has a max resolution of seconds, Prometheus milliseconds. // Thus we use higher value range steps with larger bit size. switch { case dod == 0: a.b.writeBit(zero) //写入0 case bitRange(dod, 14): //dod=[-8191,8192],先存入10作为标识,再用14bit存储dod的值 a.b.writeBits(0x02, 2) // '10' a.b.writeBits(uint64(dod), 14) case bitRange(dod, 17): //dod=[-65535,65536],先存入110作为标识,再用17bit存储该dod的值 a.b.writeBits(0x06, 3) // '110' a.b.writeBits(uint64(dod), 17) case bitRange(dod, 20): //dod=[-524287,524288],先存入1110作为标识,再用20bit存储该dod的值 a.b.writeBits(0x0e, 4) // '1110' a.b.writeBits(uint64(dod), 20) default: //dod>524288,先存入1111作为标识,再用64bit存储该dod的值 a.b.writeBits(0x0f, 4) // '1111' a.b.writeBits(uint64(dod), 64) } a.writeVDelta(v) //写入vn^vn-1 } a.t = t //写入的最初一个t a.v = v //写入的最初一个v binary.BigEndian.PutUint16(a.b.bytes(), num+1) a.tDelta = tDelta //写入的最初一个tDelta}
再看一下应用xor写入VDelta的源码:
// tsdb/chunkenc/xor.gofunc (a *xorAppender) writeVDelta(v float64) { vDelta := math.Float64bits(v) ^ math.Float64bits(a.v) //以后value与上一个value进行xor if vDelta == 0 { //xor=0,存入1bit'0'即可 a.b.writeBit(zero) return } a.b.writeBit(one) //先存入管制位'1' leading := uint8(bits.LeadingZeros64(vDelta)) //计算vdelta前置0的个数 trailing := uint8(bits.TrailingZeros64(vDelta)) //计算vdelta后置0的个数 // Clamp number of leading zeros to avoid overflow when encoding. if leading >= 32 { leading = 31 } if a.leading != 0xff && leading >= a.leading && trailing >= a.trailing { a.b.writeBit(zero) a.b.writeBits(vDelta>>a.trailing, 64-int(a.leading)-int(a.trailing)) } else { a.leading, a.trailing = leading, trailing a.b.writeBit(one) a.b.writeBits(uint64(leading), 5) // Note that if leading == trailing == 0, then sigbits == 64. But that value doesn't actually fit into the 6 bits we have. // Luckily, we never need to encode 0 significant bits, since that would put us in the other case (vdelta == 0). // So instead we write out a 0 and adjust it back to 64 on unpacking. sigbits := 64 - leading - trailing a.b.writeBits(uint64(sigbits), 6) a.b.writeBits(vDelta>>trailing, int(sigbits)) }}
读取t/v的源码剖析
xorIterator负责t/v数据的读取:根本就是写入过程的反过程
// tsdb/chunkenc/xor.gofunc (it *xorIterator) Next() bool { if it.err != nil || it.numRead == it.numTotal { return false } //读第1个点 if it.numRead == 0 { t, err := binary.ReadVarint(&it.br) //time原值读取 if err != nil { it.err = err return false } v, err := it.br.readBits(64) //value原值读取 if err != nil { it.err = err return false } it.t = t it.val = math.Float64frombits(v) it.numRead++ //读取数量+1 return true } //读第2个点 if it.numRead == 1 { tDelta, err := binary.ReadUvarint(&it.br) //读取tDelta if err != nil { it.err = err return false } it.tDelta = tDelta it.t = it.t + int64(it.tDelta) //计算time return it.readValue() //读取xor并计算出原值 } //读第3个及当前的点 var d byte //读前缀,最多4bit // read delta-of-delta for i := 0; i < 4; i++ { d <<= 1 bit, err := it.br.readBit() if err != nil { it.err = err return false } if bit == zero { break } d |= 1 } var sz uint8 var dod int64 switch d { case 0x00: // dod == 0 //前缀=0 case 0x02: sz = 14 //前缀=10,用14bit保留dod case 0x06: //前缀=110,用17bit保留dod sz = 17 case 0x0e: //前缀=1110,用20bit保留dod sz = 20 case 0x0f: //前缀=1111,用64bit保留dod bits, err := it.br.readBits(64) if err != nil { it.err = err return false } dod = int64(bits) } if sz != 0 { bits, err := it.br.readBits(int(sz)) if err != nil { it.err = err return false } if bits > (1 << (sz - 1)) { // or something bits = bits - (1 << sz) } dod = int64(bits) //读取并计算dod的值 } it.tDelta = uint64(int64(it.tDelta) + dod) //计算tdelta it.t = it.t + int64(it.tDelta) //计算time return it.readValue() //读取xor的值}
再看一下读xor值的流程:将上一个value与xor的值进行异或
// tsdb/chunkenc/xor.gofunc (it *xorIterator) readValue() bool { bit, err := it.br.readBit() //读第1个bit if err != nil { it.err = err return false } if bit == zero { //如果第1个bit=0,value放弃不变(故无需更新) // it.val = it.val } else { bit, err := it.br.readBit() if err != nil { it.err = err return false } if bit == zero { // reuse leading/trailing zero bits // it.leading, it.trailing = it.leading, it.trailing } else { bits, err := it.br.readBits(5) if err != nil { it.err = err return false } it.leading = uint8(bits) bits, err = it.br.readBits(6) if err != nil { it.err = err return false } mbits := uint8(bits) // 0 significant bits here means we overflowed and we actually need 64; see comment in encoder if mbits == 0 { mbits = 64 } it.trailing = 64 - it.leading - mbits } mbits := int(64 - it.leading - it.trailing) bits, err := it.br.readBits(mbits) if err != nil { it.err = err return false } vbits := math.Float64bits(it.val) //拿到上一个value vbits ^= (bits << it.trailing) //与xor的值进行异或,失去本地的value it.val = math.Float64frombits(vbits) // v1^v2=xor,那么v2=v1^xor } it.numRead++ return true}