绪论
本期是对腾讯热播剧——雪中悍刀行的一次爬虫与数据分析,耗时一个小时,总爬取条数1W条评论,很适宜新人练手,值得注意的一点是评论的情绪文本剖析解决,这是第一次接触的常识。
爬虫方面:因为腾讯的评论数据是封装在json外面,所以只须要找到json文件,对须要的数据进行提取保留即可。
- 视频网址:https://v.qq.com/x/cover/mzc0...
- 评论json数据网址:https://video.coral.qq.com/va...
- 注:只有替换视频数字id的值,即可爬取其余视频的评论
如何查找视频id?
我的项目构造:
一. 爬虫局部:
1.爬取评论内容代码:spiders.py
import requestsimport reimport randomdef get_html(url, params): uapools = [ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14' ] thisua = random.choice(uapools) headers = {"User-Agent": thisua} r = requests.get(url, headers=headers, params=params) r.raise_for_status() r.encoding = r.apparent_encoding r.encoding = 'utf-8'# 不加此句呈现乱码 return r.textdef parse_page(infolist, data): commentpat = '"content":"(.*?)"' lastpat = '"last":"(.*?)"' commentall = re.compile(commentpat, re.S).findall(data) next_cid = re.compile(lastpat).findall(data)[0] infolist.append(commentall) return next_ciddef print_comment_list(infolist): j = 0 for page in infolist: print('第' + str(j + 1) + '页\n') commentall = page for i in range(0, len(commentall)): print(commentall[i] + '\n') j += 1def save_to_txt(infolist, path): fw = open(path, 'w+', encoding='utf-8') j = 0 for page in infolist: #fw.write('第' + str(j + 1) + '页\n') commentall = page for i in range(0, len(commentall)): fw.write(commentall[i] + '\n') j += 1 fw.close()def main(): infolist = [] vid = '7579013546'; cid = "0"; page_num = 3000 url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2' #print(url) for i in range(page_num): params = {'orinum': '10', 'cursor': cid} html = get_html(url, params) cid = parse_page(infolist, html) print_comment_list(infolist) save_to_txt(infolist, 'content.txt')main()
2.爬取评论工夫代码:sp.py
import requestsimport reimport randomdef get_html(url, params): uapools = [ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14' ] thisua = random.choice(uapools) headers = {"User-Agent": thisua} r = requests.get(url, headers=headers, params=params) r.raise_for_status() r.encoding = r.apparent_encoding r.encoding = 'utf-8'# 不加此句呈现乱码 return r.textdef parse_page(infolist, data): commentpat = '"time":"(.*?)"' lastpat = '"last":"(.*?)"' commentall = re.compile(commentpat, re.S).findall(data) next_cid = re.compile(lastpat).findall(data)[0] infolist.append(commentall) return next_ciddef print_comment_list(infolist): j = 0 for page in infolist: print('第' + str(j + 1) + '页\n') commentall = page for i in range(0, len(commentall)): print(commentall[i] + '\n') j += 1def save_to_txt(infolist, path): fw = open(path, 'w+', encoding='utf-8') j = 0 for page in infolist: #fw.write('第' + str(j + 1) + '页\n') commentall = page for i in range(0, len(commentall)): fw.write(commentall[i] + '\n') j += 1 fw.close()def main(): infolist = [] vid = '7579013546'; cid = "0"; page_num =3000 url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2' #print(url) for i in range(page_num): params = {'orinum': '10', 'cursor': cid} html = get_html(url, params) cid = parse_page(infolist, html) print_comment_list(infolist) save_to_txt(infolist, 'time.txt')main()
二.数据处理局部
1.评论的工夫戳转换为失常工夫 time.py
# coding=gbkimport csvimport timecsvFile = open("data.csv",'w',newline='',encoding='utf-8')writer = csv.writer(csvFile)csvRow = []#print(csvRow)f = open("time.txt",'r',encoding='utf-8')for line in f: csvRow = int(line) #print(csvRow) timeArray = time.localtime(csvRow) csvRow = time.strftime("%Y-%m-%d %H:%M:%S", timeArray) print(csvRow) csvRow = csvRow.split() writer.writerow(csvRow)f.close()csvFile.close()
2.评论内容读入csv CD.py
# coding=gbkimport csvcsvFile = open("content.csv",'w',newline='',encoding='utf-8')writer = csv.writer(csvFile)csvRow = []f = open("content.txt",'r',encoding='utf-8')for line in f: csvRow = line.split() writer.writerow(csvRow)f.close()csvFile.close()
3.统计一天各个时间段内的评论数 py.py
# coding=gbkimport csvfrom pyecharts import options as optsfrom sympy.combinatorics import Subsetfrom wordcloud import WordCloudwith open('../Spiders/data.csv') as csvfile: reader = csv.reader(csvfile) data1 = [str(row[1])[0:2] for row in reader] print(data1)print(type(data1))#先变成汇合失去seq中的所有元素,防止反复遍历set_seq = set(data1)rst = []for item in set_seq: rst.append((item,data1.count(item))) #增加元素及呈现个数rst.sort()print(type(rst))print(rst)with open("time2.csv", "w+", newline='', encoding='utf-8') as f: writer = csv.writer(f, delimiter=',') for i in rst: # 对于每一行的,将这一行的每个元素别离写在对应的列中 writer.writerow(i)with open('time2.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x)with open('time2.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader] print(y1)
4.统计最近评论数 py1.py
# coding=gbkimport csvfrom pyecharts import options as optsfrom sympy.combinatorics import Subsetfrom wordcloud import WordCloudwith open('../Spiders/data.csv') as csvfile: reader = csv.reader(csvfile) data1 = [str(row[0]) for row in reader] #print(data1)print(type(data1))#先变成汇合失去seq中的所有元素,防止反复遍历set_seq = set(data1)rst = []for item in set_seq: rst.append((item,data1.count(item))) #增加元素及呈现个数rst.sort()print(type(rst))print(rst)with open("time1.csv", "w+", newline='', encoding='utf-8') as f: writer = csv.writer(f, delimiter=',') for i in rst: # 对于每一行的,将这一行的每个元素别离写在对应的列中 writer.writerow(i)with open('time1.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x)with open('time1.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader] print(y1)
三. 数据分析
数据分析方面:波及到了词云图,条形,折线,饼图,后三者是对评论工夫与主演占比的剖析,然而腾讯的评论工夫是以工夫戳的模式显示,所以要进行转换,再去统计呈现次数,最初,新加了对评论内容的情感剖析。
1.制作词云图
wc.py
import numpy as npimport reimport jiebafrom wordcloud import WordCloudfrom matplotlib import pyplot as pltfrom PIL import Image# 下面的包本人装置,不会的就百度f = open('content.txt', 'r', encoding='utf-8') # 这是数据源,也就是想生成词云的数据txt = f.read() # 读取文件f.close() # 敞开文件,其实用with就好,然而懒得改了# 如果是文章的话,须要用到jieba分词,分完之后也能够本人解决下再生成词云newtxt = re.sub("[A-Za-z0-9!%[],\。]", "", txt)print(newtxt)words = jieba.lcut(newtxt)img = Image.open(r'wc.jpg') # 想要搞得形态img_array = np.array(img)# 相干配置,外面这个collocations配置能够防止反复wordcloud = WordCloud( background_color="white", width=1080, height=960, font_path="../文悦新青年.otf", max_words=150, scale=10,#清晰度 max_font_size=100, mask=img_array, collocations=False).generate(newtxt)plt.imshow(wordcloud)plt.axis('off')plt.show()wordcloud.to_file('wc.png')
轮廓图:wc.jpg
在这里插入图片形容
词云图:result.png (注:这里要把英文字母过滤掉)
2.制作最近评论数条形图 DrawBar.py
# encoding: utf-8import csvimport pyecharts.options as optsfrom pyecharts.charts import Barfrom pyecharts.globals import ThemeTypeclass DrawBar(object): """绘制柱形图类""" def __init__(self): """创立柱状图实例,并设置宽高和格调""" self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.LIGHT)) def add_x(self): """为图形增加X轴数据""" with open('time1.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x) self.bar.add_xaxis( xaxis_data=x, ) def add_y(self): with open('time1.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader] print(y1) """为图形增加Y轴数据,可增加多条""" self.bar.add_yaxis( # 第一个Y轴数据 series_name="评论数", # Y轴数据名称 y_axis=y1, # Y轴数据 label_opts=opts.LabelOpts(is_show=True,color="black"), # 设置标签 bar_max_width='100px', # 设置柱子最大宽度 ) def set_global(self): """设置图形的全局属性""" #self.bar(width=2000,height=1000) self.bar.set_global_opts( title_opts=opts.TitleOpts( # 设置题目 title='雪中悍刀行近日评论统计',title_textstyle_opts=opts.TextStyleOpts(font_size=35) ), tooltip_opts=opts.TooltipOpts( # 提示框配置项(鼠标移到图形上时显示的货色) is_show=True, # 是否显示提示框 trigger="axis", # 触发类型(axis坐标轴触发,鼠标移到时会有一条垂直于X轴的实线追随鼠标挪动,并显示提示信息) axis_pointer_type="cross"# 指示器类型(cross将会生成两条别离垂直于X轴和Y轴的虚线,不启用trigger才会显示齐全) ), toolbox_opts=opts.ToolboxOpts(), # 工具箱配置项(什么都不填默认开启所有工具) ) def draw(self): """绘制图形""" self.add_x() self.add_y() self.set_global() self.bar.render('../Html/DrawBar.html') # 将图绘制到 test.html 文件内,可在浏览器关上 def run(self): """执行函数""" self.draw()if __name__ == '__main__': app = DrawBar()app.run()
效果图:DrawBar.html
3.制作每小时评论条形图 DrawBar2.py
# encoding: utf-8# encoding: utf-8import csvimport pyecharts.options as optsfrom pyecharts.charts import Barfrom pyecharts.globals import ThemeTypeclass DrawBar(object): """绘制柱形图类""" def __init__(self): """创立柱状图实例,并设置宽高和格调""" self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.MACARONS)) def add_x(self): """为图形增加X轴数据""" str_name1 = '点' with open('time2.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0] + str_name1) for row in reader] print(x) self.bar.add_xaxis( xaxis_data=x ) def add_y(self): with open('time2.csv') as csvfile: reader = csv.reader(csvfile) y1 = [int(row[1]) for row in reader] print(y1) """为图形增加Y轴数据,可增加多条""" self.bar.add_yaxis( # 第一个Y轴数据 series_name="评论数", # Y轴数据名称 y_axis=y1, # Y轴数据 label_opts=opts.LabelOpts(is_show=False), # 设置标签 bar_max_width='50px', # 设置柱子最大宽度 ) def set_global(self): """设置图形的全局属性""" #self.bar(width=2000,height=1000) self.bar.set_global_opts( title_opts=opts.TitleOpts( # 设置题目 title='雪中悍刀行各时间段评论统计',title_textstyle_opts=opts.TextStyleOpts(font_size=35) ), tooltip_opts=opts.TooltipOpts( # 提示框配置项(鼠标移到图形上时显示的货色) is_show=True, # 是否显示提示框 trigger="axis", # 触发类型(axis坐标轴触发,鼠标移到时会有一条垂直于X轴的实线追随鼠标挪动,并显示提示信息) axis_pointer_type="cross"# 指示器类型(cross将会生成两条别离垂直于X轴和Y轴的虚线,不启用trigger才会显示齐全) ), toolbox_opts=opts.ToolboxOpts(), # 工具箱配置项(什么都不填默认开启所有工具) ) def draw(self): """绘制图形""" self.add_x() self.add_y() self.set_global() self.bar.render('../Html/DrawBar2.html') # 将图绘制到 test.html 文件内,可在浏览器关上 def run(self): """执行函数""" self.draw()if __name__ == '__main__': app = DrawBar()app.run()
效果图:DrawBar2.html
4.制作近日评论数饼图 pie_pyecharts.py
import csvfrom pyecharts import options as optsfrom pyecharts.charts import Piefrom random import randintfrom pyecharts.globals import ThemeTypewith open('time1.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x)with open('time1.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader] print(y1)num = y1lab = x( Pie(init_opts=opts.InitOpts(width='1700px',height='450px',theme=ThemeType.LIGHT))#默认900,600 .set_global_opts( title_opts=opts.TitleOpts(title="雪中悍刀行近日评论统计", title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts( pos_top="10%", pos_left="1%",# 图例地位调整 ),) .add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图 .add(series_name='',center=[845, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图 .add(series_name='', center=[1380, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图).render('pie_pyecharts.html')
效果图
5.制作每小时评论饼图 pie_pyecharts2.py
import csvfrom pyecharts import options as optsfrom pyecharts.charts import Piefrom random import randintfrom pyecharts.globals import ThemeTypestr_name1 = '点'with open('time2.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]+str_name1) for row in reader] print(x)with open('time2.csv') as csvfile: reader = csv.reader(csvfile) y1 = [int(row[1]) for row in reader] print(y1)num = y1lab = x( Pie(init_opts=opts.InitOpts(width='1650px',height='500px',theme=ThemeType.LIGHT,))#默认900,600 .set_global_opts( title_opts=opts.TitleOpts(title="雪中悍刀行每小时评论统计" ,title_textstyle_opts=opts.TextStyleOpts(font_size=27)), legend_opts=opts.LegendOpts( pos_top="8%", pos_left="4%",# 图例地位调整 ), ) .add(series_name='',center=[250, 300], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图 .add(series_name='',center=[810, 300],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图 .add(series_name='', center=[1350, 300],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图).render('pie_pyecharts2.html')
效果图
6.制作观看工夫区间评论统计饼图 pie_pyecharts3.py
# coding=gbkimport csvfrom pyecharts import options as optsfrom pyecharts.globals import ThemeTypefrom sympy.combinatorics import Subsetfrom wordcloud import WordCloudfrom pyecharts.charts import Piefrom random import randintwith open(/data.csv') as csvfile: reader = csv.reader(csvfile) data2 = [int(row[1].strip('')[0:2]) for row in reader] #print(data2)print(type(data2))#先变成汇合失去seq中的所有元素,防止反复遍历set_seq = set(data2)list = []for item in set_seq: list.append((item,data2.count(item))) #增加元素及呈现个数list.sort()print(type(list))#print(list)with open("time2.csv", "w+", newline='', encoding='utf-8') as f: writer = csv.writer(f, delimiter=',') for i in list: # 对于每一行的,将这一行的每个元素别离写在对应的列中 writer.writerow(i)n = 4#分成n组m = int(len(list)/n)list2 = []for i in range(0, len(list), m): list2.append(list[i:i+m])print("凌晨 : ",list2[0])print("上午 : ",list2[1])print("下午 : ",list2[2])print("早晨 : ",list2[3])with open('time2.csv') as csvfile: reader = csv.reader(csvfile) y1 = [int(row[1]) for row in reader] print(y1)n =6groups = [y1[i:i + n] for i in range(0, len(y1), n)]print(groups)x=['凌晨','上午','下午','早晨']y1=[]for y1 in groups: num_sum = 0 for groups in y1: num_sum += groupsstr_name1 = '点'num = y1lab = x( Pie(init_opts=opts.InitOpts(width='1500px',height='450px',theme=ThemeType.LIGHT))#默认900,600 .set_global_opts( title_opts=opts.TitleOpts(title="雪中悍刀行观看工夫区间评论统计" , title_textstyle_opts=opts.TextStyleOpts(font_size=30)), legend_opts=opts.LegendOpts( pos_top="8%", # 图例地位调整 ), ) .add(series_name='',center=[260, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图 .add(series_name='',center=[1230, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图 .add(series_name='', center=[750, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图).render('pie_pyecharts3.html')
效果图
7.制作雪中悍刀行主演提及占比饼图 pie_pyecharts4.py
import csvfrom pyecharts import options as optsfrom pyecharts.charts import Piefrom random import randintfrom pyecharts.globals import ThemeTypef = open('content.txt', 'r', encoding='utf-8') # 这是数据源,也就是想生成词云的数据words = f.read() # 读取文件f.close() # 敞开文件,其实用with就好,然而懒得改了name=["张若昀","李庚希","胡军"]print(name)count=[float(words.count("张若昀")), float(words.count("李庚希")), float(words.count("胡军"))]print(count)num = countlab = name( Pie(init_opts=opts.InitOpts(width='1650px',height='450px',theme=ThemeType.LIGHT))#默认900,600 .set_global_opts( title_opts=opts.TitleOpts(title="雪中悍刀行主演提及占比", title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts( pos_top="3%", pos_left="33%",# 图例地位调整 ),) .add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图 .add(series_name='',center=[800, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图 .add(series_name='', center=[1300, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图).render('pie_pyecharts4.html')
效果图
8.评论内容情感剖析 SnowNLP.py
import numpy as npfrom snownlp import SnowNLPimport matplotlib.pyplot as pltf = open('content.txt', 'r', encoding='UTF-8')list = f.readlines()sentimentslist = []for i in list: s = SnowNLP(i) print(s.sentiments) sentimentslist.append(s.sentiments)plt.hist(sentimentslist, bins=np.arange(0, 1, 0.01), facecolor='g')plt.xlabel('Sentiments Probability')plt.ylabel('Quantity')plt.title('Analysis of Sentiments')plt.show()
效果图(情感各分数段呈现频率)
SnowNLP情感剖析是基于情感词典实现的,其简略的将文本分为两类,踊跃和消极,返回值为情绪的概率,也就是情感评分在[0,1]之间,越靠近1,情感体现越踊跃,越靠近0,情感体现越消极。