每日一句

A flower cannot blossom without sunshine, and man cannot live without love.
花没有阳光就不能盛开,人没有爱就不能生存。

题目起源

https://leetcode-cn.com/problems/edit-distance/

题目形容

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所应用的起码操作数 。你能够对一个单词进行如下三种操作:插入一个字符删除一个字符替换一个字符

示例

示例一:输出:word1 = "horse", word2 = "ros"输入:3解释:horse -> rorse (将 'h' 替换为 'r')rorse -> rose (删除 'r')rose -> ros (删除 'e')示例二:输出:word1 = "intention", word2 = "execution"输入:5解释:intention -> inention (删除 't')inention -> enention (将 'i' 替换为 'e')enention -> exention (将 'n' 替换为 'x')exention -> exection (将 'n' 替换为 'c')exection -> execution (插入 'u')

题解

题解1: 动静布局算法

具体算法思维请看:动静布局算法

/***  步骤一:定义数组元素的含意*    定义dp[m][n] 将 word1 转换成 word2 所应用的起码操作数, m, n别离示意两个单词的长度*  步骤二:找出初始值并设置边界条件*    dp[0][0] = 0, 别离处于首行和首列的地位均能够间接求出值*    dp[i][0] = i; m>i>=1  dp[0][i] = i; n>i>=1, m,n 示意两个单词的长度*  步骤三:找出数组元素之间的关系式*    后果:*      1. A==B时:dp[i][j] = dp[i-1][j-1]; i>=1,j>=1*      2. A!=B时:*        在单词 A 中插入一个字符:dp[i][j] = dp[i][j-1] + 1;*        在单词 A 中删除一个字符: dp[i][j] = dp[i-1][j] + 1;*        批改单词A的一个字符:dp[i][j] = dp[i-1][j-1] + 1;*        so,最小操作数为三个操作的最小值:dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) i>=1,j>=1**/class Solution {    public int min(int a, int b, int c) {        return Math.min(a, Math.min(b, c));    }    public int minDistance(String word1, String word2) {        int m = word1.length();        int n = word2.length();        int[][] dp = new int[510][510];        //初始值以及边界条件        if(m * n == 0) {            return n+m;        }        dp[0][0] = 0;        for(int i=1; i<=m; i++) {            dp[i][0] = dp[i-1][0] + 1;        }        for(int i=1; i<=n; i++) {            dp[0][i] = dp[0][i-1] + 1;        }        //关系式        for(int i=1; i<=m; i++) {            for(int j=1; j<=n; j++) {                if(word1.charAt(i-1) != word2.charAt(j-1)) {                    dp[i][j] = min(dp[i-1][j], dp[i-1][j-1], dp[i][j-1]) + 1;                }else {                    dp[i][j] = dp[i-1][j-1];                }            }        }        return dp[m][n];    }}
/***  打印门路**/class Solution {    int[][] dp = new int[510][510];    public int min(int a, int b, int c) {        return Math.min(a, Math.min(b, c));    }    public int minDistance(String word1, String word2) {        int m = word1.length();        int n = word2.length();                //初始值以及边界条件        if(m * n == 0) {            return n+m;        }        dp[0][0] = 0;        for(int i=1; i<=m; i++) {            dp[i][0] = dp[i-1][0] + 1;        }        for(int i=1; i<=n; i++) {            dp[0][i] = dp[0][i-1] + 1;        }        //关系式        for(int i=1; i<=m; i++) {            for(int j=1; j<=n; j++) {                if(word1.charAt(i-1) != word2.charAt(j-1)) {                    dp[i][j] = min(dp[i-1][j], dp[i-1][j-1], dp[i][j-1]) + 1;                }else {                    dp[i][j] = dp[i-1][j-1];                }            }        }               printPath(word1, word2, m, n);        return dp[m][n];    }    public int printPath(String word1, String word2, int i, int j) {        if(i == j & i==0) {            return 0;        }        if(word1.charAt(i-1) == word2.charAt(j-1)) {              System.out.println("A: " + word1.substring(0, i) + ";B: " + word2.substring(0, j) + " 开端字符雷同");            return printPath(word1, word2, i-1, j-1);        }else {                        if(dp[i-1][j] == dp[i][j] - 1) {                System.out.println("A: " + word1.substring(0, i) + " 删除一个字符: " + word1.charAt(i-1) +" 变成 B: " + word2.substring(0, j));                return printPath(word1, word2, i-1, j);            }            if(dp[i][j-1]== dp[i][j] - 1) {                System.out.println("A: " + word1.substring(0, i) + " 插入一个字符: " + word2.charAt(j-1) +" 变成 B: " + word2.substring(0, j));                return printPath(word1, word2, i, j-1);            }            if(dp[i-1][j-1] == dp[i][j] - 1) {                System.out.println("A: " + word1.substring(0, i) + " 批改一个字符变成 B: " + word2.substring(0, j));                return printPath(word1, word2, i-1, j-1);            }        }        return 0;    }}
/***  优化:二维dp转一维dp**/class Solution {    public int min(int a, int b, int c) {        return Math.min(a, Math.min(b, c));    }    public int minDistance(String word1, String word2) {        int m = word1.length();        int n = word2.length();        int[] dp = new int[n + 1];        //初始值以及边界条件        if(m * n == 0) {            return n+m;        }        dp[0] = 0;        //初始化首行        for(int i=1; i<=n; i++) {            dp[i] = i;        }        //关系式        for(int i=1; i<=m; i++) {            int pre = dp[0];            dp[0] = i;            for(int j=1; j<=n; j++) {                int tmp = pre;                pre = dp[j];                if(word1.charAt(i-1) == word2.charAt(j-1)) {                    dp[j] = tmp;                }else {                    dp[j] = min(dp[j], dp[j-1], tmp) + 1;                }            }        }        return dp[n];    }    }

美文佳句

幻想不在纸上、嘴上,而在抽屉里、心里;幻想不是滔滔不绝,而是专一、专一,临时保持沉默。

你好,我是yltrcc,日常分享技术点滴,欢送关注我的公众号:ylcoder