前言
写这篇文章不是为了剖析Handler怎么应用,目标是想从设计的角度来看Handler的演进过程,以及为什么会呈现Looper,MessageQueue,Handler,Message这四个类。
一.线程通信的实质?
线程区别于过程的次要因素在于,线程之间是共享内存的。在android零碎中,堆中的对象能够被所有线程拜访。因而无论是哪种线程通信形式,思考到性能问题,肯定会选用持有对方线程的某个对象来实现通信。
1.1 AsyncTask
public AsyncTask(@Nullable Looper callbackLooper) { mHandler = callbackLooper == null || callbackLooper == Looper.getMainLooper() ? getMainHandler() : new Handler(callbackLooper); mWorker = new WorkerRunnable<Params, Result>() { public Result call() throws Exception { mTaskInvoked.set(true); Result result = null; try { Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); //noinspection unchecked result = doInBackground(mParams); Binder.flushPendingCommands(); } catch (Throwable tr) { mCancelled.set(true); throw tr; } finally { postResult(result); } return result; } }; mFuture = new FutureTask<Result>(mWorker) { @Override protected void done() { try { postResultIfNotInvoked(get()); } catch (InterruptedException e) { android.util.Log.w(LOG_TAG, e); } catch (ExecutionException e) { throw new RuntimeException("An error occurred while executing doInBackground()", e.getCause()); } catch (CancellationException e) { postResultIfNotInvoked(null); } } }; }private Result postResult(Result result) { @SuppressWarnings("unchecked") Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT, new AsyncTaskResult<Result>(this, result)); message.sendToTarget(); return result; }
从用法能够看出,AsyncTask也是间接通过handler机制实现从以后线程给Looper所对应线程发送音讯的,如果不传,默认选的就是主线程的Looper。
1.2 Handler
借助ThreadLocal获取thread的Looper,传输message进行通信。实质上也是持有对象线程的Looper对象。
public Handler(@Nullable Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread " + Thread.currentThread() + " that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }public final boolean post(@NonNull Runnable r) { return sendMessageDelayed(getPostMessage(r), 0); } public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
1.3 View.post(Runnable)
public boolean post(Runnable action) { final AttachInfo attachInfo = mAttachInfo; if (attachInfo != null) { return attachInfo.mHandler.post(action); } // Postpone the runnable until we know on which thread it needs to run. // Assume that the runnable will be successfully placed after attach. getRunQueue().post(action); return true;}
getRunQueue().post(action)仅仅是在没有attachToWindow之前缓存了Runnable到数组中
private HandlerAction[] mActions;public void postDelayed(Runnable action, long delayMillis) { final HandlerAction handlerAction = new HandlerAction(action, delayMillis); synchronized (this) { if (mActions == null) { mActions = new HandlerAction[4]; } mActions = GrowingArrayUtils.append(mActions, mCount, handlerAction); mCount++; } }
等到attachToWindow时执行,因而实质上也是handler机制进行通信。
void dispatchAttachedToWindow(AttachInfo info, int visibility) { mAttachInfo = info; .... // Transfer all pending runnables. if (mRunQueue != null) { mRunQueue.executeActions(info.mHandler); mRunQueue = null; } ....
1.4 runOnUiThread
public final void runOnUiThread(Runnable action) { if (Thread.currentThread() != mUiThread) { mHandler.post(action); } else { action.run(); } }
通过获取UIThread的handler来通信。
从以上剖析能够看出,android零碎的四种常见通信形式实质上都是通过Handler技术进行通信。
二.handler解决什么问题?
handler解决线程通信问题,以及线程切换问题。实质上还是共享内存,通过持有其余线程的Looper来发送音讯。
咱们常提的Handler技术通常包含以下四局部
- Handler
- Looper
- MessageQueue
- Message
三.从架构的演进来看Handler
3.1 原始的线程通信
String msg = "hello world";Thread thread = new Thread(){ @Override public void run() { super.run(); System.out.println(msg); }};thread.start();Thread thread1 = new Thread(){ @Override public void run() { super.run(); System.out.println(msg); }};thread1.start();
3.2 结构化数据反对
为了发送结构化数据,因而设计了Message
Message msg = new Message();Thread thread = new Thread(){ @Override public void run() { super.run(); msg.content = "hello"; System.out.println(msg); }};thread.start();Thread thread1 = new Thread(){ @Override public void run() { super.run(); System.out.println(msg); }};thread1.start();
3.3 继续通信反对
Message msg = new Message();Thread thread = new Thread(){ @Override public void run() { for (;;){ msg.content = "hello"; } }};thread.start();Thread thread1 = new Thread(){ @Override public void run() { super.run(); for (;;){ System.out.println(msg.content); } }};thread1.start();
通过有限for循环阻塞线程,Handler中对应的是Looper。
3.4 线程切换反对
上述办法都只能是thread1承受扭转,而无奈告诉thread。因而设计了Handler, 同时封装了发送和承受音讯的办法.
class Message{ String content = "123"; String from = "hch";}abstract class Handler{ public void sendMessage(Message message){ handleMessage(message); } public abstract void handleMessage(Message message);}Message msg = new Message();Thread thread = new Thread(){ @Override public void run() { for (;;){ try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } msg.content = "hello"; if (handler != null){ handler.sendMessage(msg); } } }};thread.start();Thread thread1 = new Thread(){ @Override public void run() { super.run(); handler = new Handler(){ @Override public void handleMessage(Message message) { System.out.println(message.content); } }; }};thread1.start();
3.5 对于线程音讯吞吐量的反对
abstract class Handler{ BlockingDeque<Message> messageQueue = new LinkedBlockingDeque<>(); public void sendMessage(Message message){ messageQueue.add(message); } public abstract void handleMessage(Message message);}...Thread thread1 = new Thread(){ @Override public void run() { super.run(); handler = new Handler(){ @Override public void handleMessage(Message message) { if (!handler.messageQueue.isEmpty()){ System.out.println(messageQueue.pollFirst().content); } } }; }};thread1.start();
减少音讯队列MessageQueue来缓存音讯,解决线程按程序生产。造成典型的生产者消费者模型。
3.6 对于多线程的反对
上述模型最大的不便之后在于Handler的申明和应用,通信线程单方必须可能十分不便的获取到雷同的Handler。
同时思考到应用线程的便利性,咱们不能限度Handler在某个固定的中央申明。如果可能十分不便的获取到对应线程的音讯队列,而后往里面塞咱们的音讯,那该如许美妙。
因而Looper和ThreadLocal闪亮退场。
- Looper形象了有限循环的过程,并且将MessageQueue从Handler中移到Looper中。
- ThreadLocal将每个线程通过ThreadLocalMap将Looper与Thread绑定,保障可能通过任意Thread获取到对应的Looper对象,进而获取到Thread所需的要害MessageQueue.
//ThreadLocal获取Looperpublic T get() { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) { @SuppressWarnings("unchecked") T result = (T)e.value; return result; } } return setInitialValue();}//Looper写入到ThreadLocalprivate static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed));}// 队列形象private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread();}//Handler获取Looperpublic Handler(@Nullable Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread " + Thread.currentThread() + " that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async;}
3.7 google对于Handler的无奈斗争
思考一个问题,因为Handler能够在任意地位定义,sendMessage到对应的线程能够通过线程对应的Looper--MessageQueue来执行,那handleMessage的时候,如何能找到对应的Handler来解决呢?咱们可没有好的方法能间接检索到每个音讯对应的Handler
两种解决思路
- 通过公共总线,比方定义Map<Message,Handler>来索引,这种形式要求map必须定义到所有的线程都能不便获取到的中央,比方能够定义为static
- 通过音讯带Message来携带属性target到对应线程,当音讯被生产后,能够通过Message来取得Handler.
第一种形式的问题比拟显著,公共总线须要手动保护它的生命周期,google采纳的是第二种形式。
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg, long uptimeMillis) { msg.target = this; msg.workSourceUid = ThreadLocalWorkSource.getUid(); if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis);}
3.8.斗争造成Handler泄露问题的本源
因为Message持有了Handler的援用,当咱们通过外部类的模式定义Handler时,持有链为
Thread->MessageQueue->Message->Handler->Activity/Fragment
长生命周期的Thread持有了短生命周期的Activity.
解决形式: 应用动态外部类定义Handler,动态外部类不持有外部类的援用,所以应用动态的handler不会导致activity的泄露。
四.总结
- 1.线程通信实质上通过共享内存来实现
- 2.android零碎罕用的四种通信形式,理论都采纳Handler实现
- 3.Handler机制蕴含四局部Handler,MessageQueue,Message,Looper,它是架构演进的后果。
4.Handler泄露实质是因为长生命周期的对象Thead间接持有了短生命周期的对象造成。
#### 相干视频举荐:
【2021最新版】Android studio装置教程+Android(安卓)零基础教程视频(适宜Android 0根底,Android初学入门)含音视频_哔哩哔哩_bilibili
【 Android进阶教程】——Framework面试必问的Handler源码解析_哔哩哔哩_bilibili
Android进阶零碎学习——Gradle入门与我的项目实战_哔哩哔哩_bilibili
Android架构设计原理与实战——Jetpack联合MVP组合利用开发一个优良的APP!_哔哩哔哩_bilibili
本文转自 https://juejin.cn/post/7045473726929829918,如有侵权,请分割删除。