欢送来到 GreatSQL社区分享的MySQL技术文章,如有疑难或想学习的内容,能够在下方评论区留言,看到后会进行解答

MySQL优化器索引抉择迷思。

高鹏(八怪)对本文亦有奉献。

1. 问题形容

群友提出问题,表里有两个列c1、c2,别离为INT、VARCHAR类型,且别离创立了unique key。

SQL查问的条件是 WHERE c1 = ? AND c2 = ?,用EXPLAIN查看执行打算,发现优化器优先选择了VARCHAR类型的c2列索引。

他示意很不了解,难道不应该抉择看起来代价更小的INT类型的c1列吗?

2. 问题复现

创立测试表t1:

[root@yejr.run]> CREATE TABLE `t1` (  `c1` int NOT NULL AUTO_INCREMENT,  `c2` int unsigned NOT NULL,  `c3` varchar(20) NOT NULL,  `c4` varchar(20) NOT NULL,  PRIMARY KEY (`c1`),  UNIQUE KEY `k3` (`c3`),  UNIQUE KEY `k2` (`c2`)) ENGINE=InnoDB;

利用 mysql_random_data_load 写入一万行数据:

mysql_random_data_load -h127.0.0.1 -uX -pX yejr t1 10000

查看执行打算:

[root@yejr.run]> EXPLAIN SELECT * FROM t1 WHERE c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: t1   partitions: NULL         type: constpossible_keys: k3,k2          key: k3      key_len: 82          ref: const         rows: 1     filtered: 100.00        Extra: NULL

能够看到优化器确实抉择了 k3 索引,而非"预期"的 k2 索引,这是为什么呢?

3. 问题剖析

其实起因很简略粗犷:优化器认为这两个索引抉择的代价都是一样的,只是优先选中排在后面的那个索引而已。

再建一个雷同的表 t2,只不过把 k2、k3 的索引创立程序对调下:

[root@yejr.run]> CREATE TABLE `t2` (  `c1` int NOT NULL AUTO_INCREMENT,  `c2` int unsigned NOT NULL,  `c3` varchar(20) NOT NULL,  `c4` varchar(20) NOT NULL,  PRIMARY KEY (`c1`),  UNIQUE KEY `k2` (`c2`),  UNIQUE KEY `k3` (`c3`)) ENGINE=InnoDB;

再查看执行打算:

[root@yejr.run]> EXPLAIN SELECT * FROM t2 WHERE c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: t1   partitions: NULL         type: constpossible_keys: k2,k3          key: k2      key_len: 4          ref: const         rows: 1     filtered: 100.00        Extra: NULL

咱们利用 EXPLAIN ANALYZE 来查看下两次执行打算的代价比照:

-- 查看t1表执行打算代价[root@yejr.run]> EXPLAIN ANALYZE SELECT * FROM t1 WHERE  c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G*************************** 1. row ***************************EXPLAIN: -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)-- 查看t2表执行打算代价[root@yejr.run]> EXPLAIN ANALYZE SELECT * FROM t2 WHERE  c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G*************************** 1. row ***************************EXPLAIN: -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)

能够看到,很显著代价都是一样的。

再利用 OPTIMIZE_TRACE 查看执行打算,也能看到两个SQL的代价是一样的:

...          {            "rows_estimation": [              {                "table": "`t1`",                "rows": 1,                "cost": 1,                "table_type": "const",                "empty": false              }            ]          },...

所以,优化器认为抉择哪个索引都是一样的,就看哪个索引排序更靠前。

从执行SELECT时的debug trace后果也能佐证:

-- 1、 T1表,k3索引在后面  PRIMARY KEY (`c1`),  UNIQUE KEY `k3` (`c3`),  UNIQUE KEY `k2` (`c2`)  T@2: | | | | | | | | opt: (null): starting structT@2: | | | | | | | | opt: table: "`t1`"T@2: | | | | | | | | opt: field: "c3"   (C3在后面,因而最初应用k3)T@2: | | | | | | | | >convert_stringT@2: | | | | | | | | | >alloc_rootT@2: | | | | | | | | | | enter: root: 0x40a8068T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0T@2: | | | | | | | | | <alloc_root 304T@2: | | | | | | | | <convert_string 2610T@2: | | | | | | | | opt: equals: "'Louise Garrett'" T@2: | | | | | | | | opt: null_rejecting: 0T@2: | | | | | | | | opt: (null): ending structT@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1T@2: | | | | | | | | opt: (null): starting structT@2: | | | | | | | | opt: table: "`t1`"T@2: | | | | | | | | opt: field: "c2"T@2: | | | | | | | | opt: equals: "22896242"T@2: | | | | | | | | opt: null_rejecting: 0T@2: | | | | | | | | opt: null_rejecting: 0T@2: | | | | | | | | opt: (null): ending structT@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1T@2: | | | | | | | | opt: (null): starting structT@2: | | | | | | | | opt: table: "`t1`"T@2: | | | | | | | | opt: field: "c2"T@2: | | | | | | | | opt: equals: "22896242"T@2: | | | | | | | | opt: null_rejecting: 0T@2: | | | | | | | | opt: (null): ending structT@2: | | | | | | | | opt: ref_optimizer_key_uses: ending structT@2: | | | | | | | | opt: (null): ending struct-- 2、 T2表,k2索引在后面  PRIMARY KEY (`c1`),  UNIQUE KEY `k2` (`c2`),  UNIQUE KEY `k3` (`c3`)  T@2: | | | | | | | | opt: (null): starting structT@2: | | | | | | | | opt: table: "`t2`"T@2: | | | | | | | | opt: field: "c2" (C2在后面因而应用k2索引)T@2: | | | | | | | | opt: equals: "22896242"T@2: | | | | | | | | opt: null_rejecting: 0T@2: | | | | | | | | opt: (null): ending structT@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1T@2: | | | | | | | | opt: (null): starting structT@2: | | | | | | | | opt: table: "`t2`"T@2: | | | | | | | | opt: field: "c3"T@2: | | | | | | | | >convert_stringT@2: | | | | | | | | | >alloc_rootT@2: | | | | | | | | | | enter: root: 0x40a8068T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0T@2: | | | | | | | | | <alloc_root 304T@2: | | | | | | | | <convert_string 2610T@2: | | | | | | | | opt: equals: "'Louise Garrett'"T@2: | | | | | | | | opt: null_rejecting: 0T@2: | | | | | | | | opt: (null): ending structT@2: | | | | | | | | opt: ref_optimizer_key_uses: ending structT@2: | | | | | | | | opt: (null): ending struct

4. 问题延长

到这里,咱们不禁有疑难,这两个索引的代价真的是一样吗?

就让咱们用 mysqlslap 来做个简略比照测试吧:

-- 测试1:对c2列随机point selectmysqlslap -hlocalhost -uroot -Smysql.sock --no-drop --create-schema X -i 3 --number-of-queries 1000000 -q "set @xid = cast(round(rand()*2147265929) as unsigned); select * from t1 where c2 = @xid" -c 8...    Average number of seconds to run all queries: 9.483 seconds...-- 测试2:对c3列随机point selectmysqlslap -hlocalhost -uroot -Smysql.sock --no-drop --create-schema X -i 3 --number-of-queries 1000000 -q "set @xid = concat('u',cast(round(rand()*2147265929) as unsigned)); select * from t1 where c3 = @xid" -c 8...    Average number of seconds to run all queries: 10.360 seconds...

能够看到,如果是走 c3 列索引,耗时会比走 c2 列索引多进去约 7% ~ 9%(在我的环境下测试的后果,不同环境、不同数据量可能也不同)。

看来,MySQL优化器还是有必要进一步提高的哟 :)

测试应用版本:GreatSQL 8.0.25(MySQL 5.6.39后果亦是如此)。

Enjoy GreatSQL :)

本文由博客一文多发平台 OpenWrite 公布!