此次爬取波及到的库:
request+json--网页数据爬取
openpyxl--保留数据至Excel
pandas--表格数据处理
pyechars--数据可视化
一、剖析网页
关上去哪儿旅行网页:https://piao.qunar.com/
二、爬取每个行政区数据取出url和headers须要用到
def get_city_scenic(city, page): ua = UserAgent(verify_ssl=False) # headers = {'User-Agent': ua.random} headers = {'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36'} # url = f'https://piao.qunar.com/ticket/list.json?keyword={city}®ion=&from=mpl_search_suggest&sort=pp&page={page}' url = f'https://piao.qunar.com/ticket/list.json?keyword={city}®ion=&from=mpl_search_suggest&page={page}' result = requests.get(url, headers=headers, timeout=10) result.raise_for_status() return get_scenic_info(city, result.text)
三、爬取每一页数据
def get_scenic_info(city, response): response_info = json.loads(response) sight_list = response_info['data']['sightList'] one_city_scenic = [] for sight in sight_list: scenic = [] name = sight['sightName'] # 景点名称 star = sight.get('star', None) # 星级 score = sight.get('score', 0) # 评分 price = sight.get('qunarPrice', 0) # 价格 sale = sight.get('saleCount', 0) # 销量 districts = sight.get('districts', None) # 省,市,区 point = sight.get('point', None) # 坐标 intro = sight.get('intro', None) # 简介 free = sight.get('free', True) # 是否收费 address = sight.get('address', None) # 具体地址 scenic.append(city) scenic.append(name) scenic.append(star) scenic.append(score) scenic.append(price) scenic.append(sale) scenic.append(districts) scenic.append(point) scenic.append(intro) scenic.append(free) scenic.append(address) one_city_scenic.append(scenic) return one_city_scenic
四、循环爬取每个行政区每页数据
def get_city_info(city, pages): # for city in cities: one_city_info = [] for page in range(1, pages+1): try: print(f'正在爬取-{city}(省/市), 第{page}页景点数据...') time.sleep(random.uniform(0.8,1.5)) one_page_info = get_city_scenic(city, page) except: continue if one_page_info: one_city_info += one_page_info # print(one_city_info) return one_city_info
五、输入到excel表中保留
def insert2excel(filepath,allinfo): try: if not os.path.exists(filepath): tableTitle = ['城市','名称','星级','评分','价格','销量','省/市/区','坐标','简介','是否收费','具体地址'] wb = Workbook() ws = wb.active ws.title = 'sheet1' ws.append(tableTitle) wb.save(filepath) time.sleep(3) wb = load_workbook(filepath) ws = wb.active ws.title = 'sheet1' for info in allinfo: ws.append(info) wb.save(filepath) return True except: return False
爬取的过程展现:
六、数据可视化展现
通过剖析上次python爬获得到的表格数据,再用pandas模块遍历文件夹读取数据
def get_datas(): """ 遍历task文件夹里的文件 :return: """ df_allinfo = pd.DataFrame() for root, dirs, files in os.walk('D:/work/loginn/task'): print(files) for filename in files: try: df = pd.read_excel(f'D:/work/loginn/task/{filename}') df_allinfo = df_allinfo.append(df, ignore_index=True) except: continue # 去重 df_allinfo.drop_duplicates(subset=['名称'], keep='first', inplace=True) return df_allinfo # print(df_allinfo)
6.1 热门景点数据图
以门票销量前20为例:
def get_sales_bar(data): sort_info = data.sort_values(by='销量', ascending=True) c = ( Bar() .add_xaxis(list(sort_info['名称'])[-20:]) .add_yaxis('热门景点销量', sort_info['销量'].values.tolist()[-20:]) .reversal_axis() .set_global_opts( title_opts=opts.TitleOpts(title='热门景点销量数据'), yaxis_opts=opts.AxisOpts(name='景点名称'), xaxis_opts=opts.AxisOpts(name='销量'), ) .set_series_opts(label_opts=opts.LabelOpts(position="right")) .render('1-热门景点数据.html') )
成果:
6.2假期出行数据地图分布图
def get_sales_geo(data): df = data[['城市','销量']] # print(df) df_counts = df.groupby('城市').sum() df_counts = df.groupby('城市').count()['销量'] print(df_counts) c = ( Map() .add('假期出行分布', [list(z) for z in zip(df_counts.index.values.tolist(), df_counts.values.tolist())], 'china') .set_global_opts( title_opts=opts.TitleOpts(title='假期出行数据地图散布'), visualmap_opts=opts.VisualMapOpts(max_=100, is_piecewise=True), ) .render('2-假期出行数据地图散布.html') )
成果:
6.3各省市4A-5A景区数量图
def get_level_counts(data): df = data[data['星级'].isin(['4A', '5A'])] df_counts = df.groupby('城市').count()['星级'] c = ( Bar() .add_xaxis(df_counts.index.values.tolist()) .add_yaxis('4A-5A景区数量', df_counts.values.tolist()) .set_global_opts( title_opts=opts.TitleOpts(title='各省市4A-5A景区数量'), datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_='inside')], ) .render('3-各省市4A-5A景区数量.html') )
成果:
6.4 4-4A-5A景区数据地图散布
def get_level_geo(data): df = data[data['星级'].isin(['4A', '5A'])] df_counts = df.groupby('城市').count()['星级'] c = ( Map() .add('4A-5A景区散布', [list(z) for z in zip(df_counts.index.values.tolist(), df_counts.values.tolist())], 'china') .set_global_opts( title_opts=opts.TitleOpts(title='地图数据分布'), visualmap_opts=opts.VisualMapOpts(max_=50, is_piecewise=True), ) .render('4-4A-5A景区数据地图散布.html') )
成果: