什么是Lifecycle?
Lifecycle 组件指的是 android.arch.lifecycle 包下提供的各种类与接口,能够让开发者构建能感知其余组件(次要指Activity 、Fragment)生命周期(lifecycle-aware)的类。
为什么要引进Lifecycle?
后面说了,Lifecycle可能让开发者构建能感知其余组件(次要指Activity 、Fragment)生命周期(lifecycle-aware)的类。划重点,让开发者构建能感知其余组件(次要指Activity 、Fragment)生命周期(lifecycle-aware)的类。在android开发的过程中,咱们经常须要让一些操作可能感知Activity/Fragment的生命周期,从而实现在活动状态下容许操作,而在销毁状态下须要主动禁止操作,开释资源,避免内存泄露。例如赫赫有名的图片加载框架Glide在Acticiy/Fragment处于前台的时候加载图片,而在不可见的状态下进行图片的加载,又例如咱们心愿RxJava的Disposable可能在Activity/Fragment销毁是主动dispose。Lifecycle的呈现,让开发者们可能轻易地实现上述的性能。
一个用Lifecycle革新的MVP例子
比方咱们当初须要实现这样一个性能:监听某个 Activity 生命周期的变动,在生命周期扭转的时候打印日志。
- 个别做法结构回调的形式
先定义根底IPresent接口:
public interface IPresent { void onCreate(); void onStart(); void onResume(); void onPause(); void onStop(); void onDestory();}
而后在自定义的Present中继承IPresent接口:
public class MyPresent implements IPresent { private String TAG = "tag"; @Override public void onCreate() { LogUtil.i(TAG, "onCreate"); } @Override public void onStart() { LogUtil.i(TAG, "onStart"); } @Override public void onResume() { LogUtil.i(TAG, "onResume"); } @Override public void onPause() { LogUtil.i(TAG, "onPause"); } @Override public void onStop() { LogUtil.i(TAG, "onStop"); } @Override public void onDestory() { LogUtil.i(TAG, "onDestory"); }
最初在Activity顺次调用回调办法散发事件:
public class MyActivity extends AppCompatActivity { protected MyPresent myPresent; @Override public void onCreate(@Nullable Bundle savedInstanceState, @Nullable PersistableBundle persistentState) { super.onCreate(savedInstanceState, persistentState); myPresent = new MyPresent(); myPresent.onCreate(); } @Override protected void onStart() { super.onStart(); myPresent.onStart(); } @Override protected void onResume() { super.onResume(); myPresent.onResume(); } @Override protected void onPause() { super.onPause(); myPresent.onPause(); } @Override protected void onStop() { super.onStop(); myPresent.onStop(); } @Override protected void onDestroy() { super.onDestroy(); myPresent.onDestory(); }}
通过这么一个简略的例子,咱们能够看出,实现流程尽管很简略,然而代码实现繁琐,不够灵便,且代码侵入性太强。该例子只是展现了Present监听Activity生命周期,如果说还有类1,类2,类3......想要监听Activity的生命周期,那么就要在Activity的回调中增加对类1,类2,类3.....的回调。这就引起了一个思考,咱们是否可能实现Activity在生命周期发生变化时被动告诉需求方的性能呢?能够的,答案就是Lifecycle。
- Lifecycle实现Present
先实现MyPresent,同时在每一个办法实现上减少@OnLifecycleEvent(Lifecycle.Event.XXXX)注解,OnLifecycleEvent对应了Activity的生命周期办法:
public class MyPresent implements IPresent, LifecycleObserver { @OnLifecycleEvent(Lifecycle.Event.ON_CREATE) @Override public void onCreate() { LogUtil.i(TAG, "onCreate"); } @OnLifecycleEvent(Lifecycle.Event.ON_START) @Override public void onStart() { LogUtil.i(TAG, "onStart"); } @OnLifecycleEvent(Lifecycle.Event.ON_RESUME) @Override public void onResume() { LogUtil.i(TAG, "onResume"); } @OnLifecycleEvent(Lifecycle.Event.ON_PAUSE) @Override public void onPause() { LogUtil.i(TAG, "onPause"); } @OnLifecycleEvent(Lifecycle.Event.ON_STOP) @Override public void onStop() { LogUtil.i(TAG, "onStop"); } @OnLifecycleEvent(Lifecycle.Event.ON_DESTROY) @Override public void onDestory() { LogUtil.i(TAG, "onDestory"); }}
而后在须要监听的 Activity 中注册:
public class MyActivity extends AppCompatActivity { protected MyPresent myPresent; @Override public void onCreate(@Nullable Bundle savedInstanceState, @Nullable PersistableBundle persistentState) { super.onCreate(savedInstanceState, persistentState); getLifecycle().addObserver(new MyPresent()); //增加监听对象 }}
运行如下:
com.cimu.lifecycle I/MyPresent : onCreate()com.cimu.lifecycle I/MyPresent : onStart()com.cimu.lifecycle I/MyPresent : onResume()com.cimu.lifecycle I/MyPresent : onPause()com.cimu.lifecycle I/MyPresent : onStop()com.cimu.lifecycle I/MyPresent : onDestroy()
是不是很简略,咱们心愿MyPresent感知监听Activity的生命周期,只须要在Activity中调用一句getLifecycle().addObserver(new MyPresent())就能够了。Lifecycle是怎么实现感知生命周期进而告诉观察者的性能的呢?
Lifecycle源码剖析
首先须要晓得三个要害的货色:
- LifecycleOwner:生命周期的事件分发者,在 Activity/Fragment 他们的生命周期发生变化的时收回相应的 Event 给LifecycleRegistry。
- LifecycleObserver:生命周期的观察者,通过注解将处理函数与心愿监听的Event绑定,当相应的Event产生时,LifecycleRegistry会告诉相应的函数进行解决。
- LifecycleRegistry:控制中心。它负责管制state的转换、承受散发event事件。
LifeCycle的源码剖析,咱们分为两个步骤来剖析:
- 注册/登记监听流程
- *生命周期散发流程*
注册/登记监听流程源码剖析
从下面的MVP例子,咱们曾经晓得,注册只须要调用getLifecycle().addObserver(observer)即可,那么addObserver就能够作为源码剖析的入口。
通过追踪,咱们发现getLifecycle返回的是SupportActivity中的mLifecycleRegistry,类型为LifecycleRegistry:
public class SupportActivity extends Activity implements LifecycleOwner { ...... private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap = new FastSafeIterableMap<>(); private LifecycleRegistry mLifecycleRegistry = new LifecycleRegistry(this); ...... @Override public Lifecycle getLifecycle() { return mLifecycleRegistry; } ......}
那么addObserver实际上是调用了LifecycleRegistry的addObserver办法,咱们来看一下这个办法:
@Overridepublic void addObserver(@NonNull LifecycleObserver observer) { State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED; //将传进来的监听者observer封装成一个ObserverWithState ObserverWithState statefulObserver = new ObserverWithState(observer, initialState); //将封装好的ObserverWithState存入汇合中 ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver); if (previous != null) { return; } LifecycleOwner lifecycleOwner = mLifecycleOwner.get(); if (lifecycleOwner == null) { // it is null we should be destroyed. Fallback quickly return; } boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent; State targetState = calculateTargetState(observer); mAddingObserverCounter++; while ((statefulObserver.mState.compareTo(targetState) < 0 && mObserverMap.contains(observer))) { pushParentState(statefulObserver.mState); statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState)); popParentState(); // 咱们 dispatch 了一个事件给观察者,在回调观察者代码的时候,观察者可能会 // 批改咱们的状态 // mState / subling may have been changed recalculate targetState = calculateTargetState(observer); } if (!isReentrance) { // we do sync only on the top level. sync(); } mAddingObserverCounter--;}
对于注册流程,下面咱们重点关注封装了observer的ObserverWithState:
static class ObserverWithState { State mState; GenericLifecycleObserver mLifecycleObserver; ObserverWithState(LifecycleObserver observer, State initialState) { //getCallback()通过不同的类型的observer返回不同GenericLifecycleObserver实现类 mLifecycleObserver = Lifecycling.getCallback(observer); mState = initialState; } //生命周期event的散发,最终会调用到这个办法,这个办法中在调用了GenericLifecycleObserver的 //的onStateChanged办法 void dispatchEvent(LifecycleOwner owner, Event event) { State newState = getStateAfter(event); mState = min(mState, newState); mLifecycleObserver.onStateChanged(owner, event); mState = newState; }}public interface GenericLifecycleObserver extends LifecycleObserver { void onStateChanged(LifecycleOwner source, Lifecycle.Event event);}
ObserverWithState的构造方法调用了Lifecycling.getCallback()将传入的observer进行解析,生成了对接口类GenericLifecycleObserver的具体实现返回,并且在具体实现类中重写了onStateChanged办法,在onStateChanged实现了生命周期的散发。当Activity/Fragment的生命周期发生变化时,会遍历LifecycleRegistry中的mObserverMap汇合,取出其中的ObserverWithState节点,调用它的onStateChanged办法,而在ObserverWithState的onStateChanged的办法中又调用了实现了具体生命周期散发的GenericLifecycleObserver.onStateChanged办法。
在剖析Lifecycling.getCallback()办法之前,咱们先来看一下Lifecycle应用的三种根本应用形式:
- 第一种应用形式。应用@onLifecycleEvent注解。注解处理器会将该注解解析并动静生成GeneratedAdapter代码,这个GeneratedAdapter会把对应的 Lifecycle.Event 封装为办法调用。最终通过GenericLifecycleObserver的onStateChanged办法调用生成的GeneratedAdapter的callMechods办法进行事件散发(联合上面例子了解)。
public class MyLifeCycleObserver implements LifeCycleObserver { @onLifecycleEvent(LifeCycle.Event.ON_CREATE) public onCreate(LifeCycleOwner owner) { //doSomething } @onLifecycleEvent(LifeCycle.Event.ON_DESTROY) public onDestroy(LifeCycleOwner owner) { //doSomething }}public class MainActivity extends AppCompatActivity { @override public void onCreate(savedInstanceState: Bundle?) { super.onCreate(savedInstanceState) setContentView(R.layout.activity_main) getLifecycle().addObserver(new MyLifeCycleObserver()); }}
上述的例子中的MyLifeCycleObserver将会在编译时,生成GeneratedAdapter代码如下:
public class MyLifeCycleObserver_LifecycleAdapter implements GeneratedAdapter { final MyLifeCycleObserver mReceiver; MyLifeCycleObserver_LifecycleAdapter(MyLifeCycleObserver receiver) { //mReceiver就是咱们开发者传入的MyLifeCycleObserver this.mReceiver = receiver; } //callMechod办法会被GenericLifecycleObserver的onStateChanged办法调用,用以散发生命周期 @Override public void callMethods(LifecycleOwner owner, Lifecycle.Event event, boolean onAny, MethodCallsLogger logger) { boolean hasLogger = logger != null; if (onAny) { return; } //如果生命周期事件是ON_CREATE,那么调用MyLifeCycleObserver的onCreate办法 if (event == Lifecycle.Event.ON_CREATE) { if (!hasLogger || logger.approveCall("onCreate", 2)) { mReceiver.onCreate(owner); } return; } //如果生命周期事件是ON_DESTROY,那么调用MyLifeCycleObserver的onDestroy办法 if (event == Lifecycle.Event.ON_DESTROY) { if (!hasLogger || logger.approveCall("onDestroy", 2)) { mReceiver.onDestroy(owner); } return; } }}
- 第二种应用形式。间接继承GenericLifecycleObserver,并实现onStateChange办法
public class MyLifeCycleObserver extends GenericLifeCycleObserver { @override void onStateChanged(LifecycleOwner source, Lifecycle.Event event) { if(event == LifeCycleEvent.Event.ON_CREATE) { //dosomething } else if(event == LifeCycleEvent.Event.ON_DESTROY) { //doSomething } }}public class MainActivity extends AppCompatActivity { @override public void onCreate(savedInstanceState: Bundle?) { super.onCreate(savedInstanceState) setContentView(R.layout.activity_main) getLifecycle().addObserver(new MyLifeCycleObserver()); }}
- 第三种应用形式。继承DefaultLifecycleObserver接口(DefaultLifecycleObserver又继承自FullLifecycleObserver接口),并实现FullLifecycleObserver接口的onCreate、onStart、onResume、onPause、onStop、onDestroy等对应各自生命周期的办法
class MyLifycycleObserver implements DefaultLifecycleObserver { @Override public void onCreate(@NonNull LifecycleOwner owner) { //doSomething } ...... @Override public void onDestroy(@NonNull LifecycleOwner owner) { //doSomething }}public class MainActivity extends AppCompatActivity { @override public void onCreate(savedInstanceState: Bundle?) { super.onCreate(savedInstanceState) setContentView(R.layout.activity_main) getLifecycle().addObserver(new MyLifeCycleObserver()); }}
下面咱们学习了应用Lifecycle的三种根本办法,上面咱们简略看看Lifecycling.getCallback()办法是如何生成GenericLifecycleObserver具体实现类返回的:
//首先,咱们先相熟一下resolveObserverCallbackType这个办法,这个办法在Lifecycling.getCallback()//中被调用,getCallback中会依据它的返回值决定返回什么类型的GenericLifecycleObserver实现类private static int resolveObserverCallbackType(Class<?> klass) { if (klass.getCanonicalName() == null) { return REFLECTIVE_CALLBACK; } //当应用第一种形式注解时,会主动生成代码,生成的adapter继承了GeneratedAdapter, //所以返回值是GENERATED_CALLBACK Constructor<? extends GeneratedAdapter> constructor = generatedConstructor(klass); if (constructor != null) { sClassToAdapters.put(klass, Collections .<Constructor<? extends GeneratedAdapter>>singletonList(constructor)); return GENERATED_CALLBACK; } //hasLifecycleMethods办法是判断klass中是否蕴含了onLifecycleEvent.class注解 //如果蕴含,返回REFLECTIVE_CALLBACK boolean hasLifecycleMethods = ClassesInfoCache.sInstance.hasLifecycleMethods(klass); if (hasLifecycleMethods) { return REFLECTIVE_CALLBACK; } //递归调用resolveObserverCallbackType办法,遍历klass的父类 Class<?> superclass = klass.getSuperclass(); List<Constructor<? extends GeneratedAdapter>> adapterConstructors = null; if (isLifecycleParent(superclass)) { if (getObserverConstructorType(superclass) == REFLECTIVE_CALLBACK) { return REFLECTIVE_CALLBACK; } adapterConstructors = new ArrayList<>(sClassToAdapters.get(superclass)); } //遍历并且递归kclass的接口 for (Class<?> intrface : klass.getInterfaces()) { if (!isLifecycleParent(intrface)) { continue; } if (getObserverConstructorType(intrface) == REFLECTIVE_CALLBACK) { return REFLECTIVE_CALLBACK; } if (adapterConstructors == null) { adapterConstructors = new ArrayList<>(); } adapterConstructors.addAll(sClassToAdapters.get(intrface)); } if (adapterConstructors != null) { sClassToAdapters.put(klass, adapterConstructors); return GENERATED_CALLBACK; } return REFLECTIVE_CALLBACK;}
//getCallBack的参数object是咱们getLifeCycle().addObserver(observer)时传入的监听者observerstatic GenericLifecycleObserver getCallback(Object object) { if (object instanceof FullLifecycleObserver) { //第三种应用形式,因为DefaultLifecycleObserver继承与FullLifecycleObserver return new FullLifecycleObserverAdapter((FullLifecycleObserver) object); } if (object instanceof GenericLifecycleObserver) { //第二种应用形式,当咱们应用间接继承GenericLifecycleObserver这种办法时,间接返回 return (GenericLifecycleObserver) object; } final Class<?> klass = object.getClass(); //第一种应用形式,当应用注解时,getObserverConstructorType的返回值是GENERATED_CALLBACK int type = getObserverConstructorType(klass); if (type == GENERATED_CALLBACK) { List<Constructor<? extends GeneratedAdapter>> constructors = sClassToAdapters.get(klass); if (constructors.size() == 1) { GeneratedAdapter generatedAdapter = createGeneratedAdapter(constructors.get(0), object); return new SingleGeneratedAdapterObserver(generatedAdapter); } GeneratedAdapter[] adapters = new GeneratedAdapter[constructors.size()]; for (int i = 0; i < constructors.size(); i++) { adapters[i] = createGeneratedAdapter(constructors.get(i), object); } return new CompositeGeneratedAdaptersObserver(adapters); } //当oberver都不合乎下面几种类型时,会间接实例化ReflectiveGenericLifecycleObserver //作为代替返回(个别状况下,是不会走到这里的,可能是为了应答混同机制而做的的一种平安模式) //在ReflectiveGenericLifecycleObserver中会找oberver中的onLifecyleEvent注解,并且将这些带注解 //的办法生成MethodReference并增加到List<MethodReference>中,作为生命周期散发的调用办法 return new ReflectiveGenericLifecycleObserver(object);}
好了,Lifecycling.getCallback()如果真的要具体的剖析,篇幅会很大,在这里,咱们粗略的剖析了下。大家如果想深刻理解,本人联合源码看是最好不过的。
总结一下注册的流程:
- Acitivty中调用LifecycleRegistry的addObserver,传入一个LifecycleObserver
- 传入的LifecycleObserver被封装成一个ObserverWithState存入汇合中,当生命周期产生扭转的时候,就会遍历这个ObserverWithState汇合,并且调用ObserverWithState的dispatchEvent进行散发
- 在ObserverWithState构造方法中,调用了Lifecycling.getCallback(observer)生成了具体的 GenericLifecycleObserver对象返回。在ObserverWithState的dispatchEvent()办法中调用了GenericLifecycleObserver对象的onStateChanged办法进行事件散发
至于登记流程就很简略了,间接将observer从汇合中remove,代码如下:
@Overridepublic void removeObserver(@NonNull LifecycleObserver observer) { // we consciously decided not to send destruction events here in opposition to addObserver. // Our reasons for that: // 1. These events haven't yet happened at all. In contrast to events in addObservers, that // actually occurred but earlier. // 2. There are cases when removeObserver happens as a consequence of some kind of fatal // event. If removeObserver method sends destruction events, then a clean up routine becomes // more cumbersome. More specific example of that is: your LifecycleObserver listens for // a web connection, in the usual routine in OnStop method you report to a server that a // session has just ended and you close the connection. Now let's assume now that you // lost an internet and as a result you removed this observer. If you get destruction // events in removeObserver, you should have a special case in your onStop method that // checks if your web connection died and you shouldn't try to report anything to a server. mObserverMap.remove(observer);}
生命周期的散发流程
咱们注册observer的时候,实际上是调用了SupportActivity中的mLifecycleRegistry对象的办法,那么咱们剖析下SupportActivity的onCreate办法:
@Override@SuppressWarnings("RestrictedApi")protected void onCreate(@Nullable Bundle savedInstanceState) { super.onCreate(savedInstanceState); ReportFragment.injectIfNeededIn(this);}
在onCreate中调用了ReportFragment的injectIfNeedIn办法。这个办法其实就是往Activity中增加了一个Fragment。咱们晓得,Fragment是依附于Activity上的,Fragment的生命周期追随Activity的生命周期。既然这个ReportFragment可能感知Activity的生命周期,那么它是不是就是负责将生命周期事件分发给LifecycleObserver的呢?
public class ReportFragment extends Fragment { private static final String REPORT_FRAGMENT_TAG = "android.arch.lifecycle" + ".LifecycleDispatcher.report_fragment_tag"; public static void injectIfNeededIn(Activity activity) { // ProcessLifecycleOwner should always correctly work and some activities may not extend // FragmentActivity from support lib, so we use framework fragments for activities android.app.FragmentManager manager = activity.getFragmentManager(); if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null) { manager.beginTransaction().add(new ReportFragment(), REPORT_FRAGMENT_TAG).commit(); // Hopefully, we are the first to make a transaction. manager.executePendingTransactions(); } } static ReportFragment get(Activity activity) { return (ReportFragment) activity.getFragmentManager().findFragmentByTag( REPORT_FRAGMENT_TAG); } private ActivityInitializationListener mProcessListener; private void dispatchCreate(ActivityInitializationListener listener) { if (listener != null) { listener.onCreate(); } } private void dispatchStart(ActivityInitializationListener listener) { if (listener != null) { listener.onStart(); } } private void dispatchResume(ActivityInitializationListener listener) { if (listener != null) { listener.onResume(); } } @Override public void onActivityCreated(Bundle savedInstanceState) { super.onActivityCreated(savedInstanceState); dispatchCreate(mProcessListener); dispatch(Lifecycle.Event.ON_CREATE); } @Override public void onStart() { super.onStart(); dispatchStart(mProcessListener); dispatch(Lifecycle.Event.ON_START); } @Override public void onResume() { super.onResume(); dispatchResume(mProcessListener); dispatch(Lifecycle.Event.ON_RESUME); } @Override public void onPause() { super.onPause(); dispatch(Lifecycle.Event.ON_PAUSE); } @Override public void onStop() { super.onStop(); dispatch(Lifecycle.Event.ON_STOP); } @Override public void onDestroy() { super.onDestroy(); dispatch(Lifecycle.Event.ON_DESTROY); // just want to be sure that we won't leak reference to an activity mProcessListener = null; } private void dispatch(Lifecycle.Event event) { Activity activity = getActivity(); if (activity instanceof LifecycleRegistryOwner) { ((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event); return; } if (activity instanceof LifecycleOwner) { Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle(); if (lifecycle instanceof LifecycleRegistry) { ((LifecycleRegistry) lifecycle).handleLifecycleEvent(event); } } } void setProcessListener(ActivityInitializationListener processListener) { mProcessListener = processListener; } interface ActivityInitializationListener { void onCreate(); void onStart(); void onResume(); }}
ReportFragment的代码很好了解,咱们可能在代码外面发现Lifecycle.Event.xxx事件,并且在它的生命周期回调办法中将Lifecycle.Event.xxx事件传给了dispatch办法,很显著是用来散发生命周期的。在ReportFragment的dispatch办法中,调用了LifecycleRegistry的handleLifecycleEvent办法:
public void handleLifecycleEvent(@NonNull Lifecycle.Event event) { State next = getStateAfter(event); moveToState(next);}
在剖析这个办法之前,咱们先要理解Lifecycle的事件与状态:
public abstract class Lifecycle { public enum Event { /** * Constant for onCreate event of the {@link LifecycleOwner}. */ ON_CREATE, /** * Constant for onStart event of the {@link LifecycleOwner}. */ ON_START, /** * Constant for onResume event of the {@link LifecycleOwner}. */ ON_RESUME, /** * Constant for onPause event of the {@link LifecycleOwner}. */ ON_PAUSE, /** * Constant for onStop event of the {@link LifecycleOwner}. */ ON_STOP, /** * Constant for onDestroy event of the {@link LifecycleOwner}. */ ON_DESTROY, /** * An {@link Event Event} constant that can be used to match all events. */ ON_ANY } public enum State { /** * Destroyed state for a LifecycleOwner. After this event, this Lifecycle will not dispatch * any more events. For instance, for an {@link android.app.Activity}, this state is reached * <b>right before</b> Activity's {@link android.app.Activity#onDestroy() onDestroy} call. */ DESTROYED, /** * Initialized state for a LifecycleOwner. For an {@link android.app.Activity}, this is * the state when it is constructed but has not received * {@link android.app.Activity#onCreate(android.os.Bundle) onCreate} yet. */ INITIALIZED, /** * Created state for a LifecycleOwner. For an {@link android.app.Activity}, this state * is reached in two cases: * <ul> * <li>after {@link android.app.Activity#onCreate(android.os.Bundle) onCreate} call; * <li><b>right before</b> {@link android.app.Activity#onStop() onStop} call. * </ul> */ CREATED, /** * Started state for a LifecycleOwner. For an {@link android.app.Activity}, this state * is reached in two cases: * <ul> * <li>after {@link android.app.Activity#onStart() onStart} call; * <li><b>right before</b> {@link android.app.Activity#onPause() onPause} call. * </ul> */ STARTED, /** * Resumed state for a LifecycleOwner. For an {@link android.app.Activity}, this state * is reached after {@link android.app.Activity#onResume() onResume} is called. */ RESUMED; }}
Lifecycle.Event对应activity的各个申明周期,Lifecycle.State则是Lifecycle的状态。在LifecycleRegistry 中定义了状态间的转化关系:
public class LifecycleRegistry extends Lifecycle { static State getStateAfter(Event event) { switch (event) { case ON_CREATE: case ON_STOP: return CREATED; case ON_START: case ON_PAUSE: return STARTED; case ON_RESUME: return RESUMED; case ON_DESTROY: return DESTROYED; case ON_ANY: break; } throw new IllegalArgumentException("Unexpected event value " + event); } private static Event downEvent(State state) { switch (state) { case INITIALIZED: throw new IllegalArgumentException(); case CREATED: return ON_DESTROY; case STARTED: return ON_STOP; case RESUMED: return ON_PAUSE; case DESTROYED: throw new IllegalArgumentException(); } throw new IllegalArgumentException("Unexpected state value " + state); } private static Event upEvent(State state) { switch (state) { case INITIALIZED: case DESTROYED: return ON_CREATE; case CREATED: return ON_START; case STARTED: return ON_RESUME; case RESUMED: throw new IllegalArgumentException(); } throw new IllegalArgumentException("Unexpected state value " + state); }}
这三个办法,能够总结为上面这样一张图:
downEvent 在图中示意从一个状态到他上面的那个状态,upEvent 则是往上。
理解了 Lifecycle 的状态后,咱们持续来看 LifecycleRegistry。下面咱们晓得,当Activity的生命周期发生变化后,ReportFragment会感知到,从而会调用到dispatch办法,最终调用到LifecycleRegistry的 handleLifecycleEvent办法:
public class LifecycleRegistry extends Lifecycle { private int mAddingObserverCounter = 0; private boolean mHandlingEvent = false; private boolean mNewEventOccurred = false; public void handleLifecycleEvent(@NonNull Lifecycle.Event event) { State next = getStateAfter(event); moveToState(next); } private void moveToState(State next) { if (mState == next) { return; } mState = next; // 当咱们在 LifecycleRegistry 回调 LifecycleObserver 的时候触发状态变动时, // mHandlingEvent 为 true; // 增加 observer 的时候,也可能会执行回调办法,这时候如果触发了状态变动, // 则 mAddingObserverCounter != 0 if (mHandlingEvent || mAddingObserverCounter != 0) { mNewEventOccurred = true; // 不须要执行 sync。 // 执行到这里的状况是:sync() -> LifecycleObserver -> moveToState() // 这里间接返回后,还是会回到 sync(),而后持续同步状态给 observer // we will figure out what to do on upper level. return; } mHandlingEvent = true; // sync() 会把状态的变动转化为生命周期事件,而后转发给 LifecycleObserver sync(); mHandlingEvent = false; }}
LifecycleRegistry 原本要做的事其实是很简略的,但因为他须要执行客户的代码,由此引入了很多额定的复杂度。起因是,客户代码并不处在咱们的管制之下,他们可能做出任何能够做到的事。例如这里,在回调中又触发状态变动。相似的状况是,在持有锁的时候不调用客户代码,这个也会让实现变得比较复杂。
接下来咱们看 sync():
public class LifecycleRegistry extends Lifecycle { /** * Custom list that keeps observers and can handle removals / additions during traversal. * * 这个 Invariant 十分重要,他会影响到 sync() 的逻辑 * Invariant: at any moment of time for observer1 & observer2: * if addition_order(observer1) < addition_order(observer2), then * state(observer1) >= state(observer2), */ private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap = new FastSafeIterableMap<>(); private void sync() { LifecycleOwner lifecycleOwner = mLifecycleOwner.get(); if (lifecycleOwner == null) { Log.w(LOG_TAG, "LifecycleOwner is garbage collected, you shouldn't try dispatch " + "new events from it."); return; } while (!isSynced()) { // mNewEventOccurred 是为了在 observer 触发状态变动时让 backwardPass/forwardPass() // 提前返回用的。咱们刚筹备调他们,这里设置为 false 即可。 mNewEventOccurred = false; // no need to check eldest for nullability, because isSynced does it for us. if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) { // mObserverMap 里的元素的状态是非递增排列的,也就是说,队头的 state 最大 // 如果 mState 小于队列里最大的那个,阐明有元素须要更新状态 // 为了维持 mObserverMap 的 Invariant,这里咱们须要从队尾往前更新元素的状态 backwardPass(lifecycleOwner); } Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest(); // 如果 mNewEventOccurred,阐明在下面调用 backwardPass() 时,客户触发了状态批改 if (!mNewEventOccurred && newest != null && mState.compareTo(newest.getValue().mState) > 0) { forwardPass(lifecycleOwner); } } mNewEventOccurred = false; } // 判断是否须要同步,如果所有的observer的状态都曾经同步完,返回 true,否则返回false private boolean isSynced() { if (mObserverMap.size() == 0) { return true; } //eldestObserverState是最早增加的observer,newestObserverState是最新增加的observer State eldestObserverState = mObserverMap.eldest().getValue().mState; State newestObserverState = mObserverMap.newest().getValue().mState; //因为咱们保障队头的state >= 前面的元素的state,所以只有判断头尾就够了 //如果最新的和最老的Observer的状态不统一或者以后的状态和最新的状态不统一时,那么须要进行状态同步 return eldestObserverState == newestObserverState && mState == newestObserverState; }}
sync() 的次要作用就是依据把 mObserverMap 里所有元素的状态都同步为 mState。咱们持续看剩下的 backwardPass/forwardPass:
public class LifecycleRegistry extends Lifecycle { // 这段正文应该是这整个类外面最难了解的了吧,至多对于我来说是这样 // we have to keep it for cases: // void onStart() { // // removeObserver(this),阐明 this 是一个 LifecycleObserver // // 所以这里说的是,咱们在回调里执行了上面两个操作 // mRegistry.removeObserver(this); // mRegistry.add(newObserver); // } // 假设当初咱们要从 CREATED 转到 STARTED 状态(也就是说,mState 当初是 STARTED)。 // 这种状况下,只有将新的 observer 设置为 CREATED 状态,它的 onStart 才会被调用 // 为了失去这个 CREATED,在这里才引入了 mParentStates。在 forwardPass 中执行 // pushParentState(observer.mState) 时,observer.mState 就是咱们须要的 CREATED。 // backwardPass 的状况相似。 // newObserver should be brought only to CREATED state during the execution of // this onStart method. our invariant with mObserverMap doesn't help, because parent observer // is no longer in the map. private ArrayList<State> mParentStates = new ArrayList<>(); //第一个while循坏遍历咱们存储观察者的汇合, //第二个是要解决各个状态通过的event private void forwardPass(LifecycleOwner lifecycleOwner) { // 从队头开始迭代 Iterator<Entry<LifecycleObserver, ObserverWithState>> ascendingIterator = mObserverMap.iteratorWithAdditions(); while (ascendingIterator.hasNext() && !mNewEventOccurred) { Entry<LifecycleObserver, ObserverWithState> entry = ascendingIterator.next(); ObserverWithState observer = entry.getValue(); while ((observer.mState.compareTo(mState) < 0 && !mNewEventOccurred // 可能在回调客户代码的时候,客户把本人移除了 && mObserverMap.contains(entry.getKey()))) { pushParentState(observer.mState); //upEvent 返回所要经验的event //例如:以后是 STARTED , 那么他的通过的 events 就是 ON_RESUME observer.dispatchEvent(lifecycleOwner, upEvent(observer.mState)); popParentState(); } } } private void backwardPass(LifecycleOwner lifecycleOwner) { // 从队尾开始迭代 Iterator<Entry<LifecycleObserver, ObserverWithState>> descendingIterator = mObserverMap.descendingIterator(); while (descendingIterator.hasNext() && !mNewEventOccurred) { Entry<LifecycleObserver, ObserverWithState> entry = descendingIterator.next(); ObserverWithState observer = entry.getValue(); while ((observer.mState.compareTo(mState) > 0 && !mNewEventOccurred && mObserverMap.contains(entry.getKey()))) { Event event = downEvent(observer.mState); pushParentState(getStateAfter(event)); observer.dispatchEvent(lifecycleOwner, event); popParentState(); } } } private void popParentState() { mParentStates.remove(mParentStates.size() - 1); } private void pushParentState(State state) { mParentStates.add(state); }}
提醒:在看这forwardPass以及backwardPass这两个办法时,参考下面的状态转换图
- 假如以后汇合中所有
ObserverWithState
元素都处于CREATED
状态。此时接着收到了一个ON_START
事件,从图能够看出,接下来应该是要转换到STARTED
状态。因为STARTED
大于CREATED
,所以会执行forwardPass
办法。forwardPass
里调用upEvent(observer.mState)
,返回从CREATED
往上到STARTED
须要发送的事件,也就是ON_START
,于是ON_START
事件发送给了观察者。 - 假如以后
LifecycleRegistry
的mState
处于RESUMED
状态。而后调用addObserver
办法新增加一个LifecycleObserver
,该observer会被封装成ObserverWithState
存进汇合中,此时这个新的ObserverWithState
处于INITIALIZED
状态,因为RESUMED
大于INITIALIZED
,所以会执行forwardPass
办法。ObserverWithState
的状态会依照**INITIALIZED -> CREATED -> STARTED -> RESUMED**
这样的程序变迁。
总结
一些集体疑难:
- 疑点1:为什么不间接在SupportActivity的生命周期函数中给Lifecycle散发生命周期事件,而是要加一个Fragment呢?
因为不是所有的页面都继承AppCompatActivity,为了兼容非AppCompatActivity,所以封装一个同样具备生命周期的Fragment来给Lifecycle散发生命周期事件。显然Fragment 侵入性低。
- 疑点2:为什么用ReportFragment散发生命周期而不间接应用ActivityLifecycleCallbacks的回调来解决Lifecycle生命周期的变动?
因为 ActivityLifecycleCallbacks 的回调比 Fragment 和 Activity 还要早,实际上未真正执行对应的生命周期办法
Lifecycle的剖析咱们在这里就到此为止了,最初附上幅流程图,帮忙了解并记忆: