2021科大讯飞-车辆贷款守约预测挑战赛Top1--计划学习
简介
车贷守约预测问题,目标是建设危险辨认模型来预测可能守约的借款人。预测后果为借款人是否可能守约,属于二分类问题。
偏数据挖掘
的较量,关键点是如何基于对数据的了解形象演绎出有用的特色
。
站在大佬的视角,尝试学习总结,站在伟人的肩膀上,兴许看得会更远一些。
间接进入主题,开始学习套路,芜湖~
特色工程
1、罕用库、数据导入
import pandas as pdimport numpy as npimport lightgbm as lgbimport xgboost as xgbfrom sklearn.metrics import roc_auc_score, auc, roc_curve, accuracy_score, f1_scorefrom sklearn.model_selection import StratifiedKFoldfrom sklearn.preprocessing import StandardScaler, QuantileTransformer, KBinsDiscretizer, LabelEncoder, MinMaxScaler, PowerTransformerfrom tqdm import tqdmimport pickleimport logginglogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)import os
后半局部用了一些工具:
- tqdm:一个优雅的进度条显示,不便观测跑数进度以及速度;
- pickle:将对象以文件的模式寄存在磁盘上,简直所有的数据类型都能够用pickle来序列化,个别先dump,后load,相似于写出、导入的意思;作用是,一次后果屡次复用,防止反复做功,hhh,比如说A列数据处理得花2h,每次批改过后需重跑其余列数据,但毋庸批改A列数据,就能够用pickle解决这个问题,疾速调取之前的后果;
- logging:控制台输入日志,不便查看运行状态;
logging.info('data loading...')train = pd.read_csv('../xfdata/车辆贷款守约预测数据集/train.csv')test = pd.read_csv('../xfdata/车辆贷款守约预测数据集/test.csv')
2、特色工程
2.1 结构特色
针对训练集、测试集:
- 依据业务了解,计算新的特色;
- 对某些比例特色进行
等宽分箱
(cut),对某些数值特色进行等频分箱
(qcut),还有一些数值特色进行自定义分箱,划分bin的范畴;
def gen_new_feats(train, test): '''生成新特色:如年利率/分箱等特色''' # Step 1: 合并训练集和测试集 data = pd.concat([train, test]) # Step 2: 具体特色工程 # 计算二级账户的年利率 data['sub_Rate'] = (data['sub_account_monthly_payment'] * data['sub_account_tenure'] - data[ 'sub_account_sanction_loan']) / data['sub_account_sanction_loan'] # 计算主账户的年利率 data['main_Rate'] = (data['main_account_monthly_payment'] * data['main_account_tenure'] - data[ 'main_account_sanction_loan']) / data['main_account_sanction_loan'] # 对局部特色进行分箱操作 # 等宽分箱 loan_to_asset_ratio_labels = [i for i in range(10)] data['loan_to_asset_ratio_bin'] = pd.cut(data["loan_to_asset_ratio"], 10, labels=loan_to_asset_ratio_labels) # 等频分箱 data['asset_cost_bin'] = pd.qcut(data['asset_cost'], 10, labels=loan_to_asset_ratio_labels) # 自定义分箱 amount_cols = [ 'total_monthly_payment', 'main_account_sanction_loan', 'main_account_disbursed_loan', 'sub_account_sanction_loan', 'sub_account_disbursed_loan', 'main_account_monthly_payment', 'sub_account_monthly_payment', 'total_sanction_loan' ] amount_labels = [i for i in range(10)] for col in amount_cols: total_monthly_payment_bin = [-1, 5000, 10000, 30000, 50000, 100000, 300000, 500000, 1000000, 3000000, data[col].max()] data[col + '_bin'] = pd.cut(data[col], total_monthly_payment_bin, labels=amount_labels).astype(int) # Step 3: 返回蕴含新特色的训练集 & 测试集 return data[data['loan_default'].notnull()], data[data['loan_default'].isnull()]
2.2 编码-Target Encoding
Target encoding是一种联合目标值进行特色编码的形式。
在二分类中,对于特色i,target encoding在该特色取值为k时的编码值为类别k对应的目标值冀望E(y|xi=xik)。
在样本集中一共有10条记录,其中3条记录中特色Trend的取值为Up,咱们关注这3条记录。在k=Up时,目标值的冀望为2/3 ≈ 0.66,所以将Up编码为0.66。
大佬前面次要是针对id特色进行target encoding。
def gen_target_encoding_feats(train, test, encode_cols, target_col, n_fold=10): '''生成target encoding特色''' # for training set - cv tg_feats = np.zeros((train.shape[0], len(encode_cols))) kfold = StratifiedKFold(n_splits=n_fold, random_state=1024, shuffle=True) for _, (train_index, val_index) in enumerate(kfold.split(train[encode_cols], train[target_col])): df_train, df_val = train.iloc[train_index], train.iloc[val_index] for idx, col in enumerate(encode_cols): target_mean_dict = df_train.groupby(col)[target_col].mean() df_val[f'{col}_mean_target'] = df_val[col].map(target_mean_dict) tg_feats[val_index, idx] = df_val[f'{col}_mean_target'].values for idx, encode_col in enumerate(encode_cols): train[f'{encode_col}_mean_target'] = tg_feats[:, idx] # for testing set for col in encode_cols: target_mean_dict = train.groupby(col)[target_col].mean() test[f'{col}_mean_target'] = test[col].map(target_mean_dict) return train, test
说实话,这段代码还没齐全看明确~先用小本本记着,用的时候先间接掏出来,hhh
2.3 近邻欺诈特色
对于风控账户来说,存在危险的账户可能存在同批大量的注册状况,所以id可能是连着的。
这里大佬构建了近邻欺诈特色,就是每个账号的前后10个账户的lable取均值,也就代表着概率,意为可能守约账户汇集的概率,在肯定水平上代表该账户可能守约的相关性。
def gen_neighbor_feats(train, test): '''产生近邻欺诈特色''' if not os.path.exists('../user_data/neighbor_default_probs.pkl'): # 该特色须要跑的工夫较久,因而将其存成了pkl文件 neighbor_default_probs = [] for i in tqdm(range(train.customer_id.max())): if i >= 10 and i < 199706: customer_id_neighbors = list(range(i - 10, i)) + list(range(i + 1, i + 10)) elif i < 199706: customer_id_neighbors = list(range(0, i)) + list(range(i + 1, i + 10)) else: customer_id_neighbors = list(range(i - 10, i)) + list(range(i + 1, 199706)) customer_id_neighbors = [customer_id_neighbor for customer_id_neighbor in customer_id_neighbors if customer_id_neighbor in train.customer_id.values.tolist()] neighbor_default_prob = train.set_index('customer_id').loc[customer_id_neighbors].loan_default.mean() neighbor_default_probs.append(neighbor_default_prob) df_neighbor_default_prob = pd.DataFrame({'customer_id': range(0, train.customer_id.max()), 'neighbor_default_prob': neighbor_default_probs}) save_pkl(df_neighbor_default_prob, '../user_data/neighbor_default_probs.pkl') else: df_neighbor_default_prob = load_pkl('../user_data/neighbor_default_probs.pkl') train = pd.merge(left=train, right=df_neighbor_default_prob, on='customer_id', how='left') test = pd.merge(left=test, right=df_neighbor_default_prob, on='customer_id', how='left') return train, test
2.4 特色工程后果输入
TARGET_ENCODING_FETAS = [ 'employment_type', 'branch_id', 'supplier_id', 'manufacturer_id', 'area_id', 'employee_code_id', 'asset_cost_bin' ]# 特色工程logging.info('feature generating...')train, test = gen_new_feats(train, test)train, test = gen_target_encoding_feats(train, test, TARGET_ENCODING_FETAS, target_col='loan_default', n_fold=10)train, test = gen_neighbor_feats(train, test)
特色的后续解决,比方一些转换后特色的数据类型转换,一些率值特色的简化,不便后续的模型学习,加强模型的鲁棒性。
# 保留的最终特色名称列表SAVE_FEATS = [ 'customer_id', 'neighbor_default_prob', 'disbursed_amount', 'asset_cost', 'branch_id', 'supplier_id', 'manufacturer_id', 'area_id', 'employee_code_id', 'credit_score', 'loan_to_asset_ratio', 'year_of_birth', 'age', 'sub_Rate', 'main_Rate', 'loan_to_asset_ratio_bin', 'asset_cost_bin', 'employment_type_mean_target', 'branch_id_mean_target', 'supplier_id_mean_target', 'manufacturer_id_mean_target', 'area_id_mean_target', 'employee_code_id_mean_target', 'asset_cost_bin_mean_target', 'credit_history', 'average_age', 'total_disbursed_loan', 'main_account_disbursed_loan', 'total_sanction_loan', 'main_account_sanction_loan', 'active_to_inactive_act_ratio', 'total_outstanding_loan', 'main_account_outstanding_loan', 'Credit_level', 'outstanding_disburse_ratio', 'total_account_loan_no', 'main_account_tenure', 'main_account_loan_no', 'main_account_monthly_payment', 'total_monthly_payment', 'main_account_active_loan_no', 'main_account_inactive_loan_no', 'sub_account_inactive_loan_no', 'enquirie_no', 'main_account_overdue_no', 'total_overdue_no', 'last_six_month_defaulted_no' ]# 特色工程 后处理# 简化特色for col in ['sub_Rate', 'main_Rate', 'outstanding_disburse_ratio']: train[col] = train[col].apply(lambda x: 1 if x > 1 else x) test[col] = test[col].apply(lambda x: 1 if x > 1 else x)# 数据类型转换train['asset_cost_bin'] = train['asset_cost_bin'].astype(int)test['asset_cost_bin'] = test['asset_cost_bin'].astype(int)train['loan_to_asset_ratio_bin'] = train['loan_to_asset_ratio_bin'].astype(int)test['loan_to_asset_ratio_bin'] = test['loan_to_asset_ratio_bin'].astype(int)# 存储蕴含新特色的数据集logging.info('new data saving...')cols = SAVE_FEATS + ['loan_default', ]train[cols].to_csv('./train_final.csv', index=False)test[cols].to_csv('./test_final.csv', index=False)
模型构建
1、模型训练-穿插验证
采纳lightgbm、xgboost两种梯度晋升树模型,这里不多解释了,上面代码都成了“规范”,DDDD~
def train_lgb_kfold(X_train, y_train, X_test, n_fold=5): '''train lightgbm with k-fold split''' gbms = [] kfold = StratifiedKFold(n_splits=n_fold, random_state=1024, shuffle=True) oof_preds = np.zeros((X_train.shape[0],)) test_preds = np.zeros((X_test.shape[0],)) for fold, (train_index, val_index) in enumerate(kfold.split(X_train, y_train)): logging.info(f'############ fold {fold} ###########') X_tr, X_val, y_tr, y_val = X_train.iloc[train_index], X_train.iloc[val_index], y_train[train_index], y_train[val_index] dtrain = lgb.Dataset(X_tr, y_tr) dvalid = lgb.Dataset(X_val, y_val, reference=dtrain) params = { 'objective': 'binary', 'metric': 'auc', 'num_leaves': 64, 'learning_rate': 0.02, 'min_data_in_leaf': 150, 'feature_fraction': 0.8, 'bagging_fraction': 0.7, 'n_jobs': -1, 'seed': 1024 } gbm = lgb.train(params, dtrain, num_boost_round=1000, valid_sets=[dtrain, dvalid], verbose_eval=50, early_stopping_rounds=20) oof_preds[val_index] = gbm.predict(X_val, num_iteration=gbm.best_iteration) test_preds += gbm.predict(X_test, num_iteration=gbm.best_iteration) / kfold.n_splits gbms.append(gbm) return gbms, oof_preds, test_predsdef train_xgb_kfold(X_train, y_train, X_test, n_fold=5): '''train xgboost with k-fold split''' gbms = [] kfold = StratifiedKFold(n_splits=10, random_state=1024, shuffle=True) oof_preds = np.zeros((X_train.shape[0],)) test_preds = np.zeros((X_test.shape[0],)) for fold, (train_index, val_index) in enumerate(kfold.split(X_train, y_train)): logging.info(f'############ fold {fold} ###########') X_tr, X_val, y_tr, y_val = X_train.iloc[train_index], X_train.iloc[val_index], y_train[train_index], y_train[val_index] dtrain = xgb.DMatrix(X_tr, y_tr) dvalid = xgb.DMatrix(X_val, y_val) dtest = xgb.DMatrix(X_test) params={ 'booster':'gbtree', 'objective': 'binary:logistic', 'eval_metric': ['logloss', 'auc'], 'max_depth': 8, 'subsample':0.9, 'min_child_weight': 10, 'colsample_bytree':0.85, 'lambda': 10, 'eta': 0.02, 'seed': 1024 } watchlist = [(dtrain, 'train'), (dvalid, 'test')] gbm = xgb.train(params, dtrain, num_boost_round=1000, evals=watchlist, verbose_eval=50, early_stopping_rounds=20) oof_preds[val_index] = gbm.predict(dvalid, iteration_range=(0, gbm.best_iteration)) test_preds += gbm.predict(dtest, iteration_range=(0, gbm.best_iteration)) / kfold.n_splits gbms.append(gbm) return gbms, oof_preds, test_preds
def train_xgb(train, test, feat_cols, label_col, n_fold=10): '''训练xgboost''' for col in ['sub_Rate', 'main_Rate', 'outstanding_disburse_ratio']: train[col] = train[col].apply(lambda x: 1 if x > 1 else x) test[col] = test[col].apply(lambda x: 1 if x > 1 else x) X_train = train[feat_cols] y_train = train[label_col] X_test = test[feat_cols] gbms_xgb, oof_preds_xgb, test_preds_xgb = train_xgb_kfold(X_train, y_train, X_test, n_fold=n_fold) if not os.path.exists('../user_data/gbms_xgb.pkl'): save_pkl(gbms_xgb, '../user_data/gbms_xgb.pkl') return gbms_xgb, oof_preds_xgb, test_preds_xgbdef train_lgb(train, test, feat_cols, label_col, n_fold=10): '''训练lightgbm''' X_train = train[feat_cols] y_train = train[label_col] X_test = test[feat_cols] gbms_lgb, oof_preds_lgb, test_preds_lgb = train_lgb_kfold(X_train, y_train, X_test, n_fold=n_fold) if not os.path.exists('../user_data/gbms_lgb.pkl'): save_pkl(gbms_lgb, '../user_data/gbms_lgb.pkl') return gbms_lgb, oof_preds_lgb, test_preds_lgb
输入模型训练后果:
# 读取原始数据集logging.info('data loading...')train = pd.read_csv('../xfdata/车辆贷款守约预测数据集/train.csv')test = pd.read_csv('../xfdata/车辆贷款守约预测数据集/test.csv')# 特色工程logging.info('feature generating...')train, test = gen_new_feats(train, test)train, test = gen_target_encoding_feats(train, test, TARGET_ENCODING_FETAS, target_col='loan_default', n_fold=10)train, test = gen_neighbor_feats(train, test)train['asset_cost_bin'] = train['asset_cost_bin'].astype(int)test['asset_cost_bin'] = test['asset_cost_bin'].astype(int)train['loan_to_asset_ratio_bin'] = train['loan_to_asset_ratio_bin'].astype(int)test['loan_to_asset_ratio_bin'] = test['loan_to_asset_ratio_bin'].astype(int)train['asset_cost_bin_mean_target'] = train['asset_cost_bin_mean_target'].astype(float)test['asset_cost_bin_mean_target'] = test['asset_cost_bin_mean_target'].astype(float)# 模型训练:linux和mac的xgboost后果会有些许不同,以模型文件后果为主gbms_xgb, oof_preds_xgb, test_preds_xgb = train_xgb(train.copy(), test.copy(), feat_cols=SAVE_FEATS, label_col='loan_default')gbms_lgb, oof_preds_lgb, test_preds_lgb = train_lgb(train, test, feat_cols=SAVE_FEATS, label_col='loan_default')
2、划分阈值
因为是0-1二分类
,最终分类的均值,可近似了解为取到loan_default=1的概率。
再通过对cv的预测后果排序,取分位数(1-P(loan_default=1))对应的概率为预测正负样本的划分的临界点。
为了让后果更精准,采取小步长遍历临界点左近的点,找到部分最优的概率阈值。
def gen_thres_new(df_train, oof_preds): df_train['oof_preds'] = oof_preds # 可看作训练集取到loan_default=1的概率 quantile_point = df_train['loan_default'].mean() thres = df_train['oof_preds'].quantile(1 - quantile_point) # 比方 0,1,1,1 mean=0.75 1-mean=0.25,也就是25%分位数取值为0 _thresh = [] # 依照实践阈值的高低0.2范畴,0.01步长,找到最佳阈值,f1分数最高对应的阈值即为最佳阈值 for thres_item in np.arange(thres - 0.2, thres + 0.2, 0.01): _thresh.append( [thres_item, f1_score(df_train['loan_default'], np.where(oof_preds > thres_item, 1, 0), average='macro')]) _thresh = np.array(_thresh) best_id = _thresh[:, 1].argmax() # 找到f1最高对应的行 best_thresh = _thresh[best_id][0] # 取出最佳阈值 print("阈值: {}\n训练集的f1: {}".format(best_thresh, _thresh[best_id][1])) return best_thresh
3、模型交融
对xgb、lgb的模型cv后果的分位数进行加权求和
,再去找交融后的模型0-1的概率阈值。
xgb_thres = gen_thres_new(train, oof_preds_xgb)lgb_thres = gen_thres_new(train, oof_preds_lgb)# 后果聚合df_oof_res = pd.DataFrame({'customer_id': train['customer_id'], 'loan_default':train['loan_default'], 'oof_preds_xgb': oof_preds_xgb, 'oof_preds_lgb': oof_preds_lgb})# 模型交融df_oof_res['xgb_rank'] = df_oof_res['oof_preds_xgb'].rank(pct=True) # percentile rank,返回的是排序后的分位数df_oof_res['lgb_rank'] = df_oof_res['oof_preds_lgb'].rank(pct=True)df_oof_res['preds'] = 0.31 * df_oof_res['xgb_rank'] + 0.69 * df_oof_res['lgb_rank']# 交融后的模型,概率阈值thres = gen_thres_new(df_oof_res, df_oof_res['preds'])
预测
依照融模后训练集的概率阈值,对测试集预测后果进行0-1划分,输入最终预测提交后果。
def gen_submit_file(df_test, test_preds, thres, save_path): # 按最终模型交融后的阈值进行划分 df_test['test_preds_binary'] = np.where(test_preds > thres, 1, 0) df_test_submit = df_test[['customer_id', 'test_preds_binary']] df_test_submit.columns = ['customer_id', 'loan_default'] print(f'saving result to: {save_path}') df_test_submit.to_csv(save_path, index=False) print('done!') return df_test_submitdf_test_res = pd.DataFrame({'customer_id': test['customer_id'], 'test_preds_xgb': test_preds_xgb, 'test_preds_lgb': test_preds_lgb})df_test_res['xgb_rank'] = df_test_res['test_preds_xgb'].rank(pct=True)df_test_res['lgb_rank'] = df_test_res['test_preds_lgb'].rank(pct=True)df_test_res['preds'] = 0.31 * df_test_res['xgb_rank'] + 0.69 * df_test_res['lgb_rank']# 后果产出df_submit = gen_submit_file(df_test_res, df_test_res['preds'], thres, save_path='../prediction_result/result.csv')
总结
大佬的代码格调清晰、简洁,看代码十分晦涩,思路也十分清晰,能够好好学习这些工程化的代码,可拓展性强,不便debug。
从赛题角度看,对业务的思考后从id集中度上做了一个“近邻欺诈特色”;在融模操作上,按预测值的ranking值分位数加权。这些小技巧都是可间接复用的~(也是大佬提到的上分点)
上面2个问题,预计很多同学和我一样也都会有些纳闷,我就从b乎间接截图进去:
源码:https://github.com/WangliLin/...
另外,我也整顿了个ipynb,不便学习,须要的同学公众号后盾回复“1208”获取
参考:
- logging模块
- pickle模块
- tqdm模块
- Target Encoding公式
- Target Encoding
- https://zhuanlan.zhihu.com/p/...
欢送关注集体公众号:Distinct数说