文章起源 | 恒源云社区

原文地址 | 数据集实战

原文作者 | Mathor


实不相瞒,小编我对平台社区内的大佬Mathor很崇拜!这不,明天又来给大家分享大佬论文笔记了,连忙看看接下来的内容是否有你们须要的知识点吧!

注释开始:

如果不理解ResNet的同学能够先看我的这篇博客ResNet论文浏览

首先实现一个Residual Block

import torchfrom torch import nnfrom torch.nn import functional as Fclass ResBlk(nn.Module):    def __init__(self, ch_in, ch_out, stride=1):        super(ResBlk, self).__init__()        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)        self.bn1 = nn.BatchNorm2d(ch_out)                self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)        self.bn2 = nn.BatchNorm2d(ch_out)                if ch_out == ch_in:            self.extra = nn.Sequential()        else:            self.extra = nn.Sequential(                                # 1×1的卷积作用是批改输出x的channel                # [b, ch_in, h, w] => [b, ch_out, h, w]                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),                nn.BatchNorm2d(ch_out),            )            def forward(self, x):        out = F.relu(self.bn1(self.conv1(x)))        out = self.bn2(self.conv2(out))        # short cut        out = self.extra(x) + out        out = F.relu(out)                return out

Block中进行了正则化解决,以使train过程更快更稳固。同时要思考,如果两元素的ch_in和ch_out不匹配,进行加法时会报错,因而须要判断一下,如果不想等,就用1×1的卷积调整一下

测试一下

blk = ResBlk(64, 128, stride=2)tmp = torch.randn(2, 64, 32, 32)out = blk(tmp)print(out.shape)

输入的shape大小是torch.Size([2, 128, 16, 16])

这里解释一下,为什么有的层要专门设置stride。先不思考别的层,对于一个Residual block,channel从64增大到128,如果所有的stride都是1,padding也是1,那么图片的w和h也不会变,然而channel增大了,此时就会导致整个网络的参数增多。而这才仅仅一个Block,更不用说前面的FC以及更多Block了,所以stride不能全副设置为1,不要让网络的参数始终增大

而后咱们搭建残缺的ResNet-18

class ResNet18(nn.Module):    def __init__(self):        super(ResNet18, self).__init__()                self.conv1 = nn.Sequential(            nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),            nn.BatchNorm2d(64),        )        # followed 4 blocks                # [b, 64, h, w] => [b, 128, h, w]        self.blk1 = ResBlk(64, 128, stride=2)        # [b, 128, h, w] => [b, 256, h, w]        self.blk2 = ResBlk(128, 256, stride=2)        # [b, 256, h, w] => [b, 512, h, w]        self.blk3 = ResBlk(256, 512, stride=2)        # [b, 512, h, w] => [b, 512, h, w]        self.blk4 = ResBlk(512, 512, stride=2)                self.outlayer = nn.Linear(512*1*1, 10)        def forward(self, x):        x = F.relu(self.conv1(x))                # 通过四个blk当前 [b, 64, h, w] => [b, 512, h, w]        x = self.blk1(x)        x = self.blk2(x)        x = self.blk3(x)        x = self.blk4(x)                x = self.outlayer(x)                return x

测试一下

x = torch.randn(2, 3, 32, 32)model = ResNet18()out = model(x)print("ResNet:", out.shape)

后果报错了,错误信息如下

size mismatch, m1: [2048 x 2], m2: [512 x 10] at /pytorch/aten/src/TH/generic/THTensorMath.cpp:961

问题在于咱们最初定义线性层的输出维度,和上一层Block的输入维度不匹配,在ResNet18的最初一个Block运行完结后打印一下以后x的shape,后果是torch.Size([2, 512, 2, 2])

解决办法有很多,能够批改线性层的输出进行匹配,也能够在最初一层Block前面再进行一些操作,使其与512匹配

先给出批改后的代码,在做解释

class ResNet18(nn.Module):    def __init__(self):        super(ResNet18, self).__init__()                self.conv1 = nn.Sequential(            nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),            nn.BatchNorm2d(64),        )        # followed 4 blocks                # [b, 64, h, w] => [b, 128, h, w]        self.blk1 = ResBlk(64, 128, stride=2)        # [b, 128, h, w] => [b, 256, h, w]        self.blk2 = ResBlk(128, 256, stride=2)        # [b, 256, h, w] => [b, 512, h, w]        self.blk3 = ResBlk(256, 512, stride=2)        # [b, 512, h, w] => [b, 512, h, w]        self.blk4 = ResBlk(512, 512, stride=2)                self.outlayer = nn.Linear(512*1*1, 10)        def forward(self, x):        x = F.relu(self.conv1(x))                # 通过四个blk当前 [b, 64, h, w] => [b, 512, h, w]        x = self.blk1(x)        x = self.blk2(x)        x = self.blk3(x)        x = self.blk4(x)                # print("after conv:", x.shape) # [b, 512, 2, 2]                # [b, 512, h, w] => [b, 512, 1, 1]        x = F.adaptive_avg_pool2d(x, [1, 1])                x = x.view(x.size(0), -1) # [b, 512, 1, 1] => [b, 512*1*1]        x = self.outlayer(x)                return x

这里我采纳的是第二种办法,在最初一个Block完结当前,接了一个自适应的pooling层,这个pooling的作用是将不管输出的宽高是多少,全副输入称宽高都是1的tensor,其余维度放弃不变。而后再做一个reshape操作,将[batchsize, 512, 1, 1]reshape[batchsize, 512*1*1]大小的tensor,这样就和接下来的线性层对上了,线性层的输出大小是512,输入是10。因而整个网络最终输入的shape就是[batchsize, 10]

最初咱们把之前训练LeNet5的代码拷贝过去,将外面的model=LeNet5()改为model=ResNet18()就行了。残缺代码如下

import torchfrom torch import nn, optimimport torch.nn.functional as Ffrom torch.utils.data import DataLoaderfrom torchvision import datasets, transformsbatch_size=32cifar_train = datasets.CIFAR10(root='cifar', train=True, transform=transforms.Compose([    transforms.Resize([32, 32]),    transforms.ToTensor(),]), download=True)cifar_train = DataLoader(cifar_train, batch_size=batch_size, shuffle=True)cifar_test = datasets.CIFAR10(root='cifar', train=False, transform=transforms.Compose([    transforms.Resize([32, 32]),    transforms.ToTensor(),]), download=True)    cifar_test = DataLoader(cifar_test, batch_size=batch_size, shuffle=True)      class ResBlk(nn.Module):    def __init__(self, ch_in, ch_out, stride=1):        super(ResBlk, self).__init__()        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)        self.bn1 = nn.BatchNorm2d(ch_out)                self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)        self.bn2 = nn.BatchNorm2d(ch_out)                if ch_out == ch_in:            self.extra = nn.Sequential()        else:            self.extra = nn.Sequential(                                # 1×1的卷积作用是批改输出x的channel                # [b, ch_in, h, w] => [b, ch_out, h, w]                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),                nn.BatchNorm2d(ch_out),            )            def forward(self, x):        out = F.relu(self.bn1(self.conv1(x)))        out = self.bn2(self.conv2(out))        # short cut        out = self.extra(x) + out        out = F.relu(out)                return out        class ResNet18(nn.Module):    def __init__(self):        super(ResNet18, self).__init__()                self.conv1 = nn.Sequential(            nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),            nn.BatchNorm2d(64),        )        # followed 4 blocks                # [b, 64, h, w] => [b, 128, h, w]        self.blk1 = ResBlk(64, 128, stride=2)        # [b, 128, h, w] => [b, 256, h, w]        self.blk2 = ResBlk(128, 256, stride=2)        # [b, 256, h, w] => [b, 512, h, w]        self.blk3 = ResBlk(256, 512, stride=2)        # [b, 512, h, w] => [b, 512, h, w]        self.blk4 = ResBlk(512, 512, stride=2)                self.outlayer = nn.Linear(512*1*1, 10)        def forward(self, x):        x = F.relu(self.conv1(x))                # 通过四个blk当前 [b, 64, h, w] => [b, 512, h, w]        x = self.blk1(x)        x = self.blk2(x)        x = self.blk3(x)        x = self.blk4(x)                # print("after conv:", x.shape) # [b, 512, 2, 2]                # [b, 512, h, w] => [b, 512, 1, 1]        x = F.adaptive_avg_pool2d(x, [1, 1])                x = x.view(x.size(0), -1) # [b, 512, 1, 1] => [b, 512*1*1]        x = self.outlayer(x)                return xdef main():    ##########  train  ##########    #device = torch.device('cuda')    #model = ResNet18().to(device)    criteon = nn.CrossEntropyLoss()    model = ResNet18()    optimizer = optim.Adam(model.parameters(), 1e-3)    for epoch in range(1000):        model.train()        for batchidx, (x, label) in enumerate(cifar_train):            #x, label = x.to(device), label.to(device)            logits = model(x)            # logits: [b, 10]            # label:  [b]            loss = criteon(logits, label)                        # backward            optimizer.zero_grad()            loss.backward()            optimizer.step()                print('train:', epoch, loss.item())                ########## test  ##########        model.eval()        with torch.no_grad():            total_correct = 0            total_num = 0            for x, label in cifar_test:                # x, label = x.to(device), label.to(device)                # [b]                logits = model(x)                # [b]                pred = logits.argmax(dim=1)                # [b] vs [b]                total_correct += torch.eq(pred, label).float().sum().item()                total_num += x.size(0)            acc = total_correct / total_num            print('test:', epoch, acc)if __name__ == '__main__':    main()

ResNet和LeNet相比,准确率晋升的很快,然而因为层数减少,不可避免的会导致运行工夫减少,如果没有GPU,运行一个epoch大略要15分钟。读者同样能够在此基础上批改网络结构,使用一些tricks,比方说一开始就对图片做一个Normalize等