语言个性
部署简略:
- 可间接编译成机器码执行
- 不依赖其余库
- 间接运行即可部署
- 动态类型语言:编译时即可查看出暗藏的问题
- 语言层面的并发:天生反对并发,充分利用多核
弱小的规范库:
- runtime系统调度机制
- 高效的GC垃圾回收
- 丰盛的规范库
- 简略易学:25个关键字,反对内嵌C语法,面向对象,跨平台
配置装置
Mac下载地址:https://dl.google.com/go/go1....
装置门路:/usr/local/go
配置环境变量:
vi ~/.bash_profile
export GOPATH=$HOME/go
source ~/.bash_profile
常见问题
1.go.mod file not found in current directory or any parent directory
解决:go env -w GO111MODULE=auto
语法留神
- 表达式结尾不倡议加分号
导入多个包
import ( "fmt" "time")
- 函数的花括号必须与函数名同行
vim hello.go
package mainimport "fmt"func main() { fmt.Println("Hello Go!")}
编译并执行
go run hello.go
编译
go build hello.go
执行
./hello
变量 var
申明一个变量(默认值是0)
var a int
申明一个变量,并初始化一个值
var b int = 100
初始化时省去类型,通过值主动匹配数据类型(不举荐)
var c = 100var cc = "abcd"fmt.Printf("cc=%s,cc=%T",cc,cc)//cc=abcd,cc=string
省去var关键字,主动匹配(罕用)
e := 100f := "abcd"
备注:办法1.2.3能够在函数体外,申明全局变量;4只能在函数体内,申明局部变量
申明多行变量
var xx, yy int = 100, 200var mm, nn = 100, "abc"var ( cc int = 100 dd bool = true)fmt.Println("cc=",cc,"dd=",dd)
常量 const
常量是不容许批改的
const a int = 100const ( BEIJING = 1 SHANGHAI = 2)
iota:配合const应用,每行累加,第一行默认0
const ( BEIJING = 10 * iota //0 SHANGHAI //10 SHENZHEN //20)const ( a, b = iota+1,iota+2//iota=0, a=1, b=2 c, d //iota=1, c=1, d=3 g, h = iota*2,iota*3//iota=3, g=6, h=9)
函数
根本函数模式
func test(a string, b int) int { return 100}
多返回值
//匿名func test(a string, b int) (int, int) { return 666, 777}//无形参名(初始化默认为0)func test(a string, b int) (r1 int, r2 int) { r1 = 1000 r2 = 2000 return}
import与init
hello.go
package mainimport ( "GoStudy/lib1" "GoStudy/lib2")func main() { lib1.Lib1Test(); //在内部调用的函数名首字母必须大写 lib2.Lib2Test(); }//输入后果//lib1.init()...//lib2.init()...//Lib1Test()...//Lib2Test()...
lib1/lib1.go
package lib1import "fmt"func Lib1Test() { fmt.Println("Lib1Test()...")}func init() { fmt.Println("lib1.init()...")}
lib2/lib2.go
package lib2import "fmt"func Lib2Test() { fmt.Println("Lib2Test()...")}func init() { fmt.Println("lib2.init()...")}
留神:
导入匿名包(不执行包内的函数,但执行init办法)
import _ "GoStudy/lib2"
导入包别名
import l2 "GoStudy/lib2"func main() { l2.Lib2Test(); }
导入以后包中(可间接调用函数)
import . "GoStudy/lib2"func main() { Lib2Test(); }
指针 *
package mainimport "fmt"func changeValue(p *int) { *p = 10;}func main() { var a = 1 changeValue(&a) //p = &a //*p = 10 fmt.Println("a =",a) //a = 10}
defer
函数完结前执行的机制(先入后出,在return办法后执行)
package mainimport "fmt"func func1() { fmt.Println("func1()...")}func func2() { fmt.Println("func2()...")}func func3() { fmt.Println("func3()...")}func returnAndDefer() int { defer func1() defer func2() defer func3() return returnFunc()}func returnFunc() int { fmt.Println("returnFunc()...") return 0}func main() { returnAndDefer()}//执行程序:returnFunc()...func3()...func2()...func1()...
数组与动静数组
固定长度的数组
package mainimport "fmt"func test(arr []int) { arr[0] = 111}func main() { //固定长度的数组 var myArr []int //数组遍历 test(myArr)//myArr[0]不变 for k, v := range myArr2 { fmt.Println("index=",k,"value=",v) }}
动静数组(切片 slice)
动静数组是援用传递,实际上传递的是数组的指针,指向同一块内存
不同长度的动静数组形参是一样的
package mainimport "fmt"func test(arr []int) { arr[0] = 111}func main() { //固定长度的数组 myArr := []int{1,2,3,4} //数组遍历 test(myArr)//myArr[0]不变 for k, v := range myArr { fmt.Println("index=",k,"value=",v) }}//输入后果index= 0 value= 111index= 1 value= 2index= 2 value= 3index= 3 value= 4
注:_示意匿名变量
切片的申明形式
申明slice1是一个切片,并且初始化,默认值是1,2,3,长度len是3
slice1 := []int{1, 2, 3}
申明slice2是一个切片,然而并没有调配空间,须要make调配空间(初始化值是0)
var slice2 = []intslice2 = make([]int, 3)
申明slice3是一个切片并通过make调配空间(初始化值是0)
var slice3 []int = make([]int, 3)
申明slice4是一个切片并通过make调配空间(初始化值是0),通过:=推导出slice4是切片(罕用)
slice4 := make([]int, 3)
切片的追加
len:长度,示意左指针到右指针间的间隔
cap:容量,示意左指针到底层数组开端的间隔
切片的扩容机制:append时,如果长度减少后超过容量,则将容量翻倍(5 -> 10 -> 20)
var numbers = make([]int, 3, 5)//长度3, 容量5fmt.Printf("len=%d,cap=%d,slice=%v",len(numbers),cap(numbers),numbers)//len=3,cap=5,slice=[0 0 0]
向numbers追加一个元素1
numbers = append(numbers, 1)fmt.Printf("len=%d,cap=%d,slice=%v",len(numbers),cap(numbers),numbers)//len=4,cap=5,slice=[0 0 0 1]
向numbers追加一个元素2
numbers = append(numbers, 2)fmt.Printf("len=%d,cap=%d,slice=%v",len(numbers),cap(numbers),numbers)//len=5,cap=5,slice=[0 0 0 1 2]
向容量已满的slice追加元素
numbers = append(numbers, 3)fmt.Printf("len=%d,cap=%d,slice=%v",len(numbers),cap(numbers),numbers)//len=6,cap=10,slice=[0 0 0 1 2 3]
切片的截取
s := []int{1,2,3}s1 := s[0:2]s2 := make([]int, 3)copy(s2, s)//将s中的值,顺次copy到s2s1[0] = 100fmt.Println(s)//[100 2 3]fmt.Println(s1)//[100 2]fmt.Println(s2)//[1 2 3]
map
申明形式
形式一:
- 申明myMap1是一种map类型,key是string,value是string
- 在应用map前,须要先用make给map调配数据空间
var myMap1 map[string]stringmyMap1 = make(map[string]string, 10)myMap1["a"] = "aaa"myMap1["b"] = "bbb"
形式二:
myMap2 := make(map[int]string)myMap2[0] = "a"myMap2[1] = "b"fmt.Println(myMap2) //map[0:a 1:b]
形式三
myMap3 := map[int]string { 0 : "a", 1 : "b",}fmt.Println(myMap3) //map[0:a 1:b]
应用形式
map也是援用传递,做参数时传递的是指针地址
增加
myMap2 := make(map[int]string)myMap2[0] = "a"myMap2[1] = "b"
遍历
for k, v := range myMap2 { fmt.Printf("k=%d,v=%s\n",k,v)}
删除
delete(myMap2, 0)
批改
myMap2[0] = "c"
面向对象
构造体
定义
type Book struct { title string //类的属性首字母大写示意私有,否则为公有 auth string}
应用
var book1 Bookbook1.title = "Golang"book1.auth = "Tom"fmt.Println(book1)//{Golang Tom}book2 := Book{title:"aaa",auth:"bbb"}fmt.Println(book2)//{aaa bbb}book3 := Book{"aaa","bbb"}fmt.Println(book3)//{aaa bbb}
传递(传递的是正本)
func changeBook(book Book) { book.title="XXX"}func main() { var book1 Book book1.title = "Golang" book1.auth = "Tom" changeBook(book1) fmt.Println(book1)//{Golang Tom}}
类
封装:类名,属性名,办法名首字母大写示意对外能够拜访
this是调用该办法的对象的一个正本(拷贝)
func (this *Book) setName(title string) { this.title=title}func (this Book) setAuth(auth string) { this.auth=auth}func main() { book := Book{title:"aaa",auth:"bbb"} book.setName("ccc") book.setAuth("ddd") fmt.Println(book)//{ccc bbb} }
继承
package mainimport "fmt"type Human struct { name string sex string}type SuperMan struct { Human level int}func (this *Human) Eat() { fmt.Println("Human Eat...")}func (this *Human) Walk() { fmt.Println("Human Walk...")}func (this *SuperMan) Walk() { fmt.Println("SuperMan Walk...")}func (this *SuperMan) Fly() { fmt.Println("SuperMan Fly...")}func main() { tom := Human{"aaa","bbb"} tom.Eat() //Human Eat... tom.Walk()//Human Walk... //s :=SuperMan{Human{"ccc","ddd"},100} var s SuperMan s.name = "Sss" s.sex = "man" s.level= 88 s.Walk()//SuperMan Walk... s.Fly()//SuperMan Fly...}
多态
interface实质是父类的一个指针
基本要素:
- 有一个父类(接口)
- 有子类实现了父类的全副接口办法
- 父类类型的变量(指针)指向(援用)子类的具体数据变量
package mainimport "fmt"type AnimalIF interface { Sleep() GetColor() string}type Cat struct { color string}func (this *Cat) Sleep() { fmt.Println("Cat Sleep...")}func (this *Cat) GetColor() string { return this.color}type Dog struct { color string}func (this *Dog) Sleep() { fmt.Println("Dog Sleep...")}func (this *Dog) GetColor() string { return this.color}func showAnimal(animal AnimalIF) { animal.Sleep() fmt.Println("color=",animal.GetColor())}func main() { var animal AnimalIF//接口的数据类型:父类指针 animal = &Cat{"White"} animal.Sleep()//Cat Sleep... fmt.Println("color=",animal.GetColor())//color= White dog := Dog{"Yellow"} showAnimal(&dog) //Dog Sleep... //color= Yellow}
万能数据类型 interface{} (空接口)
interface{} 类型断言机制:arg.(string)
package mainimport "fmt"type Book struct { tile string}func test(arg interface{}){ fmt.Println(arg) //断言 _, ok := arg.(string) if !ok { fmt.Println("arg is not string") }else{ fmt.Println("arg is string") }}func main() { book := Book{"Golang"} test(book)//{Golang} test(123)//123 test("hello")//hello}
变量类型
变量pair对
type
- static type:int/string
- concrete type:interfece所指的具体数据类型(零碎runtime看得见的类型)
- value
package mainimport "fmt"type Reader interface { ReadBook()}type Writer interface { WriteBook()}type Book struct {}func (this *Book) ReadBook() { fmt.Println("Read a book.")}func (this *Book) WriteBook() { fmt.Println("Write a book.")}func main() { b := &Book{}//b: pair<type:Book, value:Book{}地址> var r Reader//r: pair<type: 空, value: 空> r = b //r: pair<type:Book, value:Book{}地址> r.ReadBook() var w Writer w = r.(Writer)//w: pair<type:Book, value:Book{}地址> //断言有两步:失去动静类型 type,判断 type 是否实现了指标接口。 //这里断言胜利是因为 type 是 Book,而 Book 实现了 Writer 接口 w.WriteBook()}
反射 reflect
例1:
package mainimport ( "fmt" "reflect")func reflectNum(arg interface{}){ fmt.Println("type:", reflect.TypeOf(arg)) fmt.Println("value:", reflect.ValueOf(arg))}func main() { var num float64 = 1.34556 reflectNum(num) //type: float64 //value: 1.34556}
例2:
package mainimport ( "fmt" "reflect")type User struct { Id int Name string Age int}func (this User) Call(){ fmt.Printf("User: %v", this)}func DoFieldAndMethod(input interface{}){ inputType := reflect.TypeOf(input) inputValue := reflect.ValueOf(input) //遍历属性 for i := 0; i < inputType.NumField(); i++ { field := inputType.Field(i) value := inputValue.Field(i).Interface() fmt.Printf("%s:%v = %v\n",field.Name, field.Type, value) } //Id:int //Name:string = Lilei //Age:int = 18 //遍历办法(留神指针类型的构造体办法无奈打印) for i := 0; i < inputType.NumMethod(); i++ { inputMethod := inputType.Method(i) fmt.Printf("%s:%v\n",inputMethod.Name, inputMethod.Type) } //Call:func(main.User)}func main() { user := User{1, "Lilei", 18} DoFieldAndMethod(user)}
构造体标签 Tag
package mainimport ( "fmt" "reflect")type User struct { Name string `info:"name" doc:"姓名"` Age int `info:"age" doc:"年龄"`}func findTag(input interface{}){ inputType := reflect.TypeOf(input).Elem() //遍历属性 for i := 0; i < inputType.NumField(); i++ { taginfo := inputType.Field(i).Tag.Get("info") tagdoc := inputType.Field(i).Tag.Get("doc") fmt.Printf("info:%s doc:%s\n",taginfo, tagdoc) }}func main() { var u User findTag(&u) //info:name doc:姓名 //info:age doc:年龄}
构造体标签在json中的利用
package mainimport ( "fmt" "encoding/json")type User struct { Name string `json:"name"` Age int `json:"age"` Hobby []string `json:"hobby"`}func main() { user := User{"lilei", 18, []string{"dance","football"}} //json编码 jsonStr, err := json.Marshal(user) if err != nil { fmt.Println("Json marshal error.") return } fmt.Printf("json = %s",jsonStr)//json = {"name":"lilei","age":18,"hobby":["dance","football"]} //json解码 user1 := User{} err = json.Unmarshal(jsonStr, &user1) if err != nil { fmt.Println("Json unmarshal error.") return } fmt.Println(user1)//{lilei 18 [dance football]}}