浏览这篇文章之前,倡议先浏览和这篇文章关联的内容。

1. 具体分析散布式微服务架构下网络通信的底层实现原理(图解)

2. (年薪60W的技巧)工作了5年,你真的了解Netty以及为什么要用吗?(深度干货)

3. 深度解析Netty中的外围组件(图解+实例)

4. BAT面试必问细节:对于Netty中的ByteBuf详解

5. 通过大量实战案例合成Netty中是如何解决拆包黏包问题的?

6. 基于Netty实现自定义音讯通信协议(协定设计及解析利用实战)

7. 全网最具体最齐全的序列化技术及深度解析与利用实战

8. 手把手教你基于Netty实现一个根底的RPC框架(通俗易懂)

9. (年薪60W分水岭)基于Netty手写实现RPC框架进阶篇(带注册核心和注解)

提前准备好如下代码, 从服务端构建着手,深入分析Netty服务端的启动过程。

public class NettyBasicServerExample {    public void bind(int port){        //netty的服务端编程要从EventLoopGroup开始,        // 咱们要创立两个EventLoopGroup,        // 一个是boss专门用来接管连贯,能够了解为解决accept事件,        // 另一个是worker,能够关注除了accept之外的其它事件,解决子工作。        //下面留神,boss线程个别设置一个线程,设置多个也只会用到一个,而且多个目前没有利用场景,        // worker线程通常要依据服务器调优,如果不写默认就是cpu的两倍。        EventLoopGroup bossGroup=new NioEventLoopGroup();        EventLoopGroup workerGroup=new NioEventLoopGroup();        try {            //服务端要启动,须要创立ServerBootStrap,            // 在这外面netty把nio的模板式的代码都给封装好了            ServerBootstrap bootstrap = new ServerBootstrap();            bootstrap.group(bossGroup, workerGroup)                //配置Server的通道,相当于NIO中的ServerSocketChannel                .channel(NioServerSocketChannel.class)                .handler(new LoggingHandler(LogLevel.INFO)) //设置ServerSocketChannel对应的Handler                //childHandler示意给worker那些线程配置了一个处理器,                // 这个就是下面NIO中说的,把解决业务的具体逻辑形象进去,放到Handler外面                .childHandler(new ChannelInitializer<SocketChannel>() {                    @Override                    protected void initChannel(SocketChannel socketChannel) throws Exception {                        socketChannel.pipeline()                            .addLast(new NormalInBoundHandler("NormalInBoundA",false))                            .addLast(new NormalInBoundHandler("NormalInBoundB",false))                            .addLast(new NormalInBoundHandler("NormalInBoundC",true));                        socketChannel.pipeline()                            .addLast(new NormalOutBoundHandler("NormalOutBoundA"))                            .addLast(new NormalOutBoundHandler("NormalOutBoundB"))                            .addLast(new NormalOutBoundHandler("NormalOutBoundC"))                            .addLast(new ExceptionHandler());                    }                });            //绑定端口并同步期待客户端连贯            ChannelFuture channelFuture=bootstrap.bind(port).sync();            System.out.println("Netty Server Started,Listening on :"+port);            //期待服务端监听端口敞开            channelFuture.channel().closeFuture().sync();        } catch (InterruptedException e) {            e.printStackTrace();        } finally {            //开释线程资源            bossGroup.shutdownGracefully();            workerGroup.shutdownGracefully();        }    }    public static void main(String[] args) {        new NettyBasicServerExample().bind(8080);    }}
public class NormalInBoundHandler extends ChannelInboundHandlerAdapter {    private final String name;    private final boolean flush;    public NormalInBoundHandler(String name, boolean flush) {        this.name = name;        this.flush = flush;    }    @Override    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {        System.out.println("InboundHandler:"+name);        if(flush){            ctx.channel().writeAndFlush(msg);        }else {            throw new RuntimeException("InBoundHandler:"+name);        }    }    @Override    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {        System.out.println("InboundHandlerException:"+name);        super.exceptionCaught(ctx, cause);    }}
public class NormalOutBoundHandler extends ChannelOutboundHandlerAdapter {    private final String name;    public NormalOutBoundHandler(String name) {        this.name = name;    }    @Override    public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {        System.out.println("OutBoundHandler:"+name);        super.write(ctx, msg, promise);    }}

在服务端启动之前,须要配置ServerBootstrap的相干参数,这一步大略分为以下几个步骤

  • 配置EventLoopGroup线程组
  • 配置Channel类型
  • 设置ServerSocketChannel对应的Handler
  • 设置网络监听的端口
  • 设置SocketChannel对应的Handler
  • 配置Channel参数

Netty会把咱们配置的这些信息组装,公布服务监听。

ServerBootstrap参数配置过程

上面这段代码是咱们配置ServerBootStrap相干参数,这个过程比较简单,就是把配置的参数值保留到ServerBootstrap定义的成员变量中就能够了。

bootstrap.group(bossGroup, workerGroup)    //配置Server的通道,相当于NIO中的ServerSocketChannel    .channel(NioServerSocketChannel.class)    .handler(new LoggingHandler(LogLevel.INFO)) //设置ServerSocketChannel对应的Handler    //childHandler示意给worker那些线程配置了一个处理器,    // 这个就是下面NIO中说的,把解决业务的具体逻辑形象进去,放到Handler外面    .childHandler(new ChannelInitializer<SocketChannel>() {    });

咱们来看一下ServerBootstrap的类关系图以及属性定义

ServerBootstrap类关系图

如图8-1所示,示意ServerBootstrap的类关系图。

  • AbstractBootstrap,定义了一个抽象类,作为抽象类,肯定是抽离了Bootstrap相干的形象逻辑,所以很显然能够推断出Bootstrap应该也继承了AbstractBootstrap
  • ServerBootstrap,服务端的启动类,
  • ServerBootstrapAcceptor,继承了ChannelInboundHandlerAdapter,所以自身就是一个Handler,当服务端启动后,客户端连贯上来时,会先进入到ServerBootstrapAccepter。

<img src="https://mic-blob-bucket.oss-cn-beijing.aliyuncs.com/202111182305905.png" alt="image-20210910154646643" style="zoom:80%;" />

<center>图8-1 ServerBootstrap类关系图</center>

AbstractBootstrap属性定义

public abstract class AbstractBootstrap<B extends AbstractBootstrap<B, C>, C extends Channel> implements Cloneable {    @SuppressWarnings("unchecked")    private static final Map.Entry<ChannelOption<?>, Object>[] EMPTY_OPTION_ARRAY = new Map.Entry[0];    @SuppressWarnings("unchecked")    private static final Map.Entry<AttributeKey<?>, Object>[] EMPTY_ATTRIBUTE_ARRAY = new Map.Entry[0];    /**     * 这里的EventLoopGroup 作为服务端 Acceptor 线程,负责解决客户端的申请接入     * 作为客户端 Connector 线程,负责注册监听连贯操作位,用于判断异步连贯后果。     */    volatile EventLoopGroup group; //    @SuppressWarnings("deprecation")    private volatile ChannelFactory<? extends C> channelFactory;  //channel工厂,很显著应该是用来制作对应Channel的    private volatile SocketAddress localAddress;  //SocketAddress用来绑定一个服务端地址    // The order in which ChannelOptions are applied is important they may depend on each other for validation    // purposes.    /**     * ChannelOption 能够增加Channer 增加一些配置信息     */    private final Map<ChannelOption<?>, Object> options = new LinkedHashMap<ChannelOption<?>, Object>();    private final Map<AttributeKey<?>, Object> attrs = new ConcurrentHashMap<AttributeKey<?>, Object>();    /**     *  ChannelHandler 是具体怎么解决Channer 的IO事件。     */    private volatile ChannelHandler handler;}

对于上述属性定义,整体总结如下:

  1. 提供了一个ChannelFactory对象用来创立Channel,一个Channel会对应一个EventLoop用于IO的事件处理,在一个Channel的整个生命周期中 只会绑定一个EventLoop,这里可了解给Channel调配一个线程进行IO事件处理,完结后回收该线程。
  2. AbstractBootstrap没有提供EventLoop而是提供了一个EventLoopGroup,其实我认为这里只用一个EventLoop就行了。
  3. 不论是服务器还是客户端的Channel都须要绑定一个本地端口这就有了SocketAddress类的对象localAddress。
  4. Channel有很多选项所有有了options对象LinkedHashMap<channeloption<?>, Object>
  5. 怎么解决Channel的IO事件呢,咱们增加一个事件处理器ChannelHandler对象。

ServerBootstrap属性定义

ServerBootstrap能够了解为服务器启动的工厂类,咱们能够通过它来实现服务器端的 Netty 初始化。主要职责:|

  • EventLoop初始化
  • channel的注册
  • pipeline的初始化
  • handler的增加过程
  • 服务端连贯解决。
public class ServerBootstrap extends AbstractBootstrap<ServerBootstrap, ServerChannel> {    private static final InternalLogger logger = InternalLoggerFactory.getInstance(ServerBootstrap.class);    // The order in which child ChannelOptions are applied is important they may depend on each other for validation    // purposes.    //SocketChannel相干的属性配置    private final Map<ChannelOption<?>, Object> childOptions = new LinkedHashMap<ChannelOption<?>, Object>();    private final Map<AttributeKey<?>, Object> childAttrs = new ConcurrentHashMap<AttributeKey<?>, Object>();    private final ServerBootstrapConfig config = new ServerBootstrapConfig(this); //配置类    private volatile EventLoopGroup childGroup;  //工作线程组    private volatile ChannelHandler childHandler; //负责SocketChannel的IO解决相干的Handler    public ServerBootstrap() { }}

服务端启动过程剖析

理解了ServerBootstrap相干属性的配置之后,咱们持续来看服务的启动过程,在开始往下剖析的时候,先无妨来思考以下这些问题

  • Netty本人实现的Channel与底层JDK提供的Channel是如何分割并且构建实现的
  • ChannelInitializer这个非凡的Handler处理器的作用以及实现原理
  • Pipeline是如何初始化以的

ServerBootstrap.bind

先来看ServerBootstrap.bind()办法的定义,这里次要用来绑定一个端口并且公布服务端监听。

依据咱们应用NIO相干API的了解,无非就是应用JDK底层的API来关上一个服务端监听并绑定一个端口。

 ChannelFuture channelFuture=bootstrap.bind(port).sync();
public ChannelFuture bind(SocketAddress localAddress) {    validate();    return doBind(ObjectUtil.checkNotNull(localAddress, "localAddress"));}
  • validate(), 验证ServerBootstrap核心成员属性的配置是否正确,比方group、channelFactory、childHandler、childGroup等,这些属性如果没配置,那么服务端启动会报错
  • localAddress,绑定一个本地端口地址

doBind

doBind办法比拟长,从大的代码构造,能够分为三个局部

  • initAndRegister 初始化并注册Channel,并返回一个ChannelFuture,阐明初始化注册Channel是异步实现
  • regFuture.cause() 用来判断initAndRegister()是否产生异样,如果产生异样,则间接返回
  • regFuture.isDone(), 判断initAndRegister()办法是否执行实现。

    • 如果执行实现,则调用doBind0()办法。
    • 如果未执行实现,regFuture增加一个监听回调,在监听回调中再次判断执行后果进行相干解决。
    • PendingRegistrationPromise 用来保留异步执行后果的状态

从整体代码逻辑来看,逻辑构造还是十分清晰的, initAndRegister()办法负责Channel的初始化和注册、doBind0()办法用来绑定端口。这个无非就是咱们应用NIO相干API公布服务所做的事件。

private ChannelFuture doBind(final SocketAddress localAddress) {    final ChannelFuture regFuture = initAndRegister();    final Channel channel = regFuture.channel();    if (regFuture.cause() != null) {        return regFuture;    }        if (regFuture.isDone()) {        // At this point we know that the registration was complete and successful.        ChannelPromise promise = channel.newPromise();        doBind0(regFuture, channel, localAddress, promise);        return promise;    } else {        // Registration future is almost always fulfilled already, but just in case it's not.        final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);        regFuture.addListener(new ChannelFutureListener() {            @Override            public void operationComplete(ChannelFuture future) throws Exception {                Throwable cause = future.cause();                if (cause != null) {                    // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an                    // IllegalStateException once we try to access the EventLoop of the Channel.                    promise.setFailure(cause);                } else {                    // Registration was successful, so set the correct executor to use.                    // See https://github.com/netty/netty/issues/2586                    promise.registered();                    doBind0(regFuture, channel, localAddress, promise);                }            }        });        return promise;    }}

initAndRegister

这个办法顾名思义,就是初始化和注册,基于咱们整个流程的剖析能够猜测到

  • 初始化,应该就是构建服务端的Handler解决链
  • register,应该就是把以后服务端的连贯注册到selector上

上面咱们通过源码印证咱们的猜测。

final ChannelFuture initAndRegister() {    Channel channel = null;    try {        //通过ChannelFactory创立一个具体的Channel实现        channel = channelFactory.newChannel();        init(channel); //初始化    } catch (Throwable t) {        //省略....    }    //这个代码应该和咱们猜测是统一的,就是将以后初始化的channel注册到selector上,这个过程同样也是异步的    ChannelFuture regFuture = config().group().register(channel);    if (regFuture.cause() != null) { //获取regFuture的执行后果        if (channel.isRegistered()) {             channel.close();        } else {            channel.unsafe().closeForcibly();        }    }    return regFuture;}

channelFactory.newChannel()

这个办法在剖析之前,咱们能够持续揣测它的逻辑。

在最开始构建服务端的代码中,咱们通过channel设置了一个NioServerSocketChannel.class类对象,这个对象示意以后channel的构建应用哪种具体的API

bootstrap.group(bossGroup, workerGroup)    //配置Server的通道,相当于NIO中的ServerSocketChannel    .channel(NioServerSocketChannel.class)

而在initAndRegister办法中,又用到了channelFactory.newChannel()来生成一个具体的Channel实例,因而不难想到,这两者必然有肯定的分割,咱们也能够果断的认为,这个工厂会依据咱们配置的channel来动静构建一个指定的channel实例。

channelFactory有多个实现类,所以咱们能够从配置办法中找到channelFactory的具体定义,代码如下。

public B channel(Class<? extends C> channelClass) {    return channelFactory(new ReflectiveChannelFactory<C>(        ObjectUtil.checkNotNull(channelClass, "channelClass")    ));}

channelFactory对应的具体实现是:ReflectiveChannelFactory,因而咱们定位到newChannel()办法的实现。

ReflectiveChannelFactory.newChannel

在该办法中,应用constructor构建了一个实例。

@Overridepublic T newChannel() {    try {        return constructor.newInstance();    } catch (Throwable t) {        throw new ChannelException("Unable to create Channel from class " + constructor.getDeclaringClass(), t);    }}

construtor的初始化代码如下, 用到了传递进来的clazz类,取得该类的结构器,该结构器后续能够通过newInstance创立一个实例对象

而此时的clazz其实就是:NioServerSocketChannel
public class ReflectiveChannelFactory<T extends Channel> implements ChannelFactory<T> {    private final Constructor<? extends T> constructor;    public ReflectiveChannelFactory(Class<? extends T> clazz) {        ObjectUtil.checkNotNull(clazz, "clazz");        try {            this.constructor = clazz.getConstructor();        } catch (NoSuchMethodException e) {            throw new IllegalArgumentException("Class " + StringUtil.simpleClassName(clazz) +                    " does not have a public non-arg constructor", e);        }    }}

NioServerSocketChannel

NioServerSocketChannel的构造方法定义如下。

public class NioServerSocketChannel extends AbstractNioMessageChannel                             implements io.netty.channel.socket.ServerSocketChannel {    private static ServerSocketChannel newSocket(SelectorProvider provider) {        try {            return provider.openServerSocketChannel();        } catch (IOException e) {            throw new ChannelException(                    "Failed to open a server socket.", e);        }    }    public NioServerSocketChannel() {        this(newSocket(DEFAULT_SELECTOR_PROVIDER));    }}

当NioServerSocketChannel实例化后,调用newSocket办法创立了一个服务端实例。

newSocket办法中调用了provider.openServerSocketChannel(),来实现ServerSocketChannel的创立,ServerSocketChannel就是Java中NIO中的服务端API。

public ServerSocketChannel openServerSocketChannel() throws IOException {    return new ServerSocketChannelImpl(this);}

通过层层推演,最终看到了Netty是如何一步步封装,实现ServerSocketChannel的创立。

设置非阻塞

在NioServerSocketChannel中的构造方法中,先通过super调用父类做一些配置操作

public NioServerSocketChannel(ServerSocketChannel channel) {    super(null, channel, SelectionKey.OP_ACCEPT);    config = new NioServerSocketChannelConfig(this, javaChannel().socket());}

最终,super会调用AbstractNioChannel中的构造方法,

protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {    super(parent);    this.ch = ch;    this.readInterestOp = readInterestOp; //设置关怀事件,此时是一个连贯事件,所以是OP_ACCEPT    try {        ch.configureBlocking(false); //设置非阻塞    } catch (IOException e) {        try {            ch.close();        } catch (IOException e2) {            logger.warn(                "Failed to close a partially initialized socket.", e2);        }        throw new ChannelException("Failed to enter non-blocking mode.", e);    }}

持续剖析initAndRegister

剖析实现channel的初始化后,接下来就是要将以后channel注册到Selector上,所以持续回到initAndRegister办法。

final ChannelFuture initAndRegister() {//省略....    //这个代码应该和咱们猜测是统一的,就是将以后初始化的channel注册到selector上,这个过程同样也是异步的    ChannelFuture regFuture = config().group().register(channel);    if (regFuture.cause() != null) { //获取regFuture的执行后果        if (channel.isRegistered()) {             channel.close();        } else {            channel.unsafe().closeForcibly();        }    }    return regFuture;}

注册到某个Selector上,其实就是注册到某个EventLoopGroup中,如果大家能有这个猜测,阐明后面的内容是听懂了的。

config().group().register(channel)这段代码,其实就是获取在ServerBootstrap中配置的bossEventLoopGroup,而后把以后的服务端channel注册到该group中。

此时,咱们通过快捷键想去看一下register的实现时,发现EventLoopGroup又有多个实现,咱们来看一下类关系图如图8-2所示。

<img src="https://mic-blob-bucket.oss-cn-beijing.aliyuncs.com/202111182305717.png" alt="image-20210910170502364" style="zoom:67%;" />

<center>图8-3 EventLoopGroup类关系图</center>

而咱们在后面配置的EventLoopGroup的实现类是NioEventLoopGroup,而NioEventLoopGroup继承自MultithreadEventLoopGroup,所以在register()办法中,咱们间接找到父类的实现办法即可。

MultithreadEventLoopGroup.register

这段代码大家都熟了,从NioEventLoopGroup中抉择一个NioEventLoop,将以后channel注册下来

@Overridepublic ChannelFuture register(Channel channel) {    return next().register(channel);}

next()办法返回的是NioEventLoop,而NioEventLoop又有多个实现类,咱们来看图8-4所示的类关系图。

<img src="https://mic-blob-bucket.oss-cn-beijing.aliyuncs.com/202111182305139.png" alt="image-20210910171415854" style="zoom:67%;" />

<center>图8-4 NioEventLoop类关系图</center>

从类关系图中发现,发现NioEventLoop派生自SingleThreadEventLoop,所以next().register(channel);办法,执行的是SingleThreadEventLoop中的register

SingleThreadEventLoop.register

@Overridepublic ChannelFuture register(Channel channel) {    return register(new DefaultChannelPromise(channel, this));}
@Overridepublic ChannelFuture register(final ChannelPromise promise) {    ObjectUtil.checkNotNull(promise, "promise");    promise.channel().unsafe().register(this, promise);    return promise;}

ChannelPromise, 派生自Future,用来实现异步工作解决回调性能。简略来说就是把注册的动作异步化,当异步执行完结后会把执行后果回填到ChannelPromise中

AbstractChannel.register

抽象类个别就是公共逻辑的解决,而这里的解决次要就是针对一些参数的判断,判断完了之后再调用register0()办法。

@Overridepublic final void register(EventLoop eventLoop, final ChannelPromise promise) {    ObjectUtil.checkNotNull(eventLoop, "eventLoop");    if (isRegistered()) { //判断是否曾经注册过        promise.setFailure(new IllegalStateException("registered to an event loop already"));        return;    }    if (!isCompatible(eventLoop)) { //判断eventLoop类型是否是EventLoop对象类型,如果不是则抛出异样        promise.setFailure(            new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName()));        return;    }    AbstractChannel.this.eventLoop = eventLoop;    //Reactor外部线程调用,也就是说以后register办法是EventLoop线程触发的,则执行上面流程    if (eventLoop.inEventLoop()) {        register0(promise);    } else { //如果是内部线程        try {            eventLoop.execute(new Runnable() {                @Override                public void run() {                    register0(promise);                }            });        } catch (Throwable t) {            logger.warn(                "Force-closing a channel whose registration task was not accepted by an event loop: {}",                AbstractChannel.this, t);            closeForcibly();            closeFuture.setClosed();            safeSetFailure(promise, t);        }    }}

AbstractChannel.register0

Netty从EventLoopGroup线程组中抉择一个EventLoop和以后的Channel绑定,之后该Channel生命周期中的所有I/O事件都由这个EventLoop负责。

register0办法次要做四件事:

  • 调用JDK层面的API对以后Channel进行注册
  • 触发HandlerAdded事件
  • 触发channelRegistered事件
  • Channel状态为沉闷时,触发channelActive事件

在以后的ServerSocketChannel连贯注册的逻辑中,咱们只须要关注上面的doRegister办法即可。

private void register0(ChannelPromise promise) {    try {        // check if the channel is still open as it could be closed in the mean time when the register        // call was outside of the eventLoop        if (!promise.setUncancellable() || !ensureOpen(promise)) {            return;        }        boolean firstRegistration = neverRegistered;        doRegister();  //调用JDK层面的register()办法进行注册        neverRegistered = false;        registered = true;        // Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the        // user may already fire events through the pipeline in the ChannelFutureListener.        pipeline.invokeHandlerAddedIfNeeded(); //触发Handler,如果有必要的状况下        safeSetSuccess(promise);        pipeline.fireChannelRegistered();        // Only fire a channelActive if the channel has never been registered. This prevents firing        // multiple channel actives if the channel is deregistered and re-registered.        if (isActive()) { //此时是ServerSocketChannel的注册,所以连贯还处于非沉闷状态            if (firstRegistration) {                pipeline.fireChannelActive();             } else if (config().isAutoRead()) {                // This channel was registered before and autoRead() is set. This means we need to begin read                // again so that we process inbound data.                //                // See https://github.com/netty/netty/issues/4805                beginRead();            }        }    } catch (Throwable t) {        // Close the channel directly to avoid FD leak.        closeForcibly();        closeFuture.setClosed();        safeSetFailure(promise, t);    }}

AbstractNioChannel.doRegister

进入到AbstractNioChannel.doRegister办法。

javaChannel().register()负责调用JDK层面的办法,把channel注册到eventLoop().unwrappedSelector()上,其中第三个参数传入的是Netty本人实现的Channel对象,也就是把该对象绑定到attachment中。

这样做的目标是,后续每次调Selector对象进行事件轮询时,当触发事件时,Netty都能够获取本人的Channe对象。

@Overrideprotected void doRegister() throws Exception {    boolean selected = false;    for (;;) {        try {            selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);            return;        } catch (CancelledKeyException e) {            if (!selected) {                // Force the Selector to select now as the "canceled" SelectionKey may still be                // cached and not removed because no Select.select(..) operation was called yet.                eventLoop().selectNow();                selected = true;            } else {                // We forced a select operation on the selector before but the SelectionKey is still cached                // for whatever reason. JDK bug ?                throw e;            }        }    }}

服务注册总结

上述代码比拟绕,然而整体总结下来并不难理解

  • 初始化指定的Channel实例
  • 把该Channel调配给某一个EventLoop
  • 而后把Channel注册到该EventLoop的Selector中

AbstractBootstrap.doBind0

剖析完了注册的逻辑后,再回到AbstractBootstrap类中的doBind0办法,这个办法不必看也能晓得,ServerSocketChannel初始化了之后,接下来要做的就是绑定一个ip和端口地址。

private static void doBind0(    final ChannelFuture regFuture, final Channel channel,    final SocketAddress localAddress, final ChannelPromise promise) {    //获取以后channel中的eventLoop实例,执行一个异步工作。    //须要留神,以前咱们在课程中讲过,eventLoop在轮询中一方面要执行select遍历,另一方面要执行阻塞队列中的工作,而这里就是把工作增加到队列中异步执行。    channel.eventLoop().execute(new Runnable() {        @Override        public void run() {            //如果ServerSocketChannel注册胜利,则调用该channel的bind办法            if (regFuture.isSuccess()) {                channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);            } else {                promise.setFailure(regFuture.cause());            }        }    });}

channel.bind办法,会依据ServerSocketChannel中的handler链配置,一一进行调用,因为在本次案例中,咱们给ServerSocketChannel配置了一个 LoggingHandler的处理器,所以bind办法会先调用LoggingHandler,而后再调用DefaultChannelPipeline中的bind办法,调用链路

-> DefaultChannelPipeline.ind

-> AbstractChannel.bind

-> NioServerSocketChannel.doBind

最终就是调用后面初始化好的ServerSocketChannel中的bind办法绑定本地地址和端口。

protected void doBind(SocketAddress localAddress) throws Exception {    if (PlatformDependent.javaVersion() >= 7) {        javaChannel().bind(localAddress, config.getBacklog());    } else {        javaChannel().socket().bind(localAddress, config.getBacklog());    }}

构建SocketChannel的Pipeline

在ServerBootstrap的配置中,咱们针对SocketChannel,配置了入站和出站的Handler,也就是当某个SocketChannel的IO事件就绪时,就会依照咱们配置的处理器链表进行逐个解决,那么这个链表是什么时候构建的,又是什么样的构造呢?上面咱们来剖析这部分的内容

.childHandler(new ChannelInitializer<SocketChannel>() {    @Override    protected void initChannel(SocketChannel socketChannel) throws Exception {        socketChannel.pipeline()            .addLast(new NormalInBoundHandler("NormalInBoundA",false))            .addLast(new NormalInBoundHandler("NormalInBoundB",false))            .addLast(new NormalInBoundHandler("NormalInBoundC",true));        socketChannel.pipeline()            .addLast(new NormalOutBoundHandler("NormalOutBoundA"))            .addLast(new NormalOutBoundHandler("NormalOutBoundB"))            .addLast(new NormalOutBoundHandler("NormalOutBoundC"))            .addLast(new ExceptionHandler());    }});

childHandler的构建

childHandler的构建过程,在AbstractChannel.register0办法中实现

final ChannelFuture initAndRegister() {        Channel channel = null;        try {            channel = channelFactory.newChannel(); //这是是创立channel            init(channel); //这里是初始化        } catch (Throwable t) {            //省略....        }        ChannelFuture regFuture = config().group().register(channel); //这是是注册        if (regFuture.cause() != null) {            if (channel.isRegistered()) {                channel.close();            } else {                channel.unsafe().closeForcibly();            }        }        return regFuture;    }

ServerBootstrap.init

init办法,调用的是ServerBootstrap中的init(),代码如下。

@Overridevoid init(Channel channel) {    setChannelOptions(channel, newOptionsArray(), logger);    setAttributes(channel, newAttributesArray());    ChannelPipeline p = channel.pipeline();    final EventLoopGroup currentChildGroup = childGroup;    final ChannelHandler currentChildHandler = childHandler;  //childHandler就是在服务端配置时增加的ChannelInitializer    final Entry<ChannelOption<?>, Object>[] currentChildOptions = newOptionsArray(childOptions);    final Entry<AttributeKey<?>, Object>[] currentChildAttrs = newAttributesArray(childAttrs);    // 此时的Channel是NioServerSocketChannel,这里是为NioServerSocketChannel增加处理器链。    p.addLast(new ChannelInitializer<Channel>() {        @Override        public void initChannel(final Channel ch) {            final ChannelPipeline pipeline = ch.pipeline();            ChannelHandler handler = config.handler(); //如果在ServerBootstrap构建时,通过.handler增加了处理器,则会把相干处理器增加到NioServerSocketChannel中的pipeline中。            if (handler != null) {                pipeline.addLast(handler);            }            ch.eventLoop().execute(new Runnable() { //异步天剑一个ServerBootstrapAcceptor处理器,从名字来看,                @Override                public void run() {                    pipeline.addLast(new ServerBootstrapAcceptor(                        //currentChildHandler,示意SocketChannel的pipeline,当收到客户端连贯时,就会把该handler增加到以后SocketChannel的pipeline中                        ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));                }            });        }    });}

其中,对于上述代码的外围局部阐明如下

  • ChannelPipeline 是在AbstractChannel中的构造方法中初始化的一个DefaultChannelPipeline

    protected AbstractChannel(Channel parent) {    this.parent = parent;    id = newId();    unsafe = newUnsafe();    pipeline = newChannelPipeline();}
  • p.addLast是为NioServerSocketChannel增加handler处理器链,这里增加了一个ChannelInitializer回调函数,该回调是异步触发的,在回调办法中做了两件事

    • 如果ServerBootstrap.handler增加了处理器,则会把相干处理器增加到该pipeline中,在本次演示的案例中,咱们增加了LoggerHandler
    • 异步执行增加了ServerBootstrapAcceptor,从名字来看,它是专门用来接管新的连贯解决的。

咱们在这里思考一个问题,为什么NioServerSocketChannel须要通过ChannelInitializer回调处理器呢? ServerBootstrapAcceptor为什么通过异步工作增加到pipeline中呢?

起因是,NioServerSocketChannel在初始化的时候,还没有开始将该Channel注册到Selector对象上,也就是没方法把ACCEPT事件注册到Selector上,所以当时增加了ChannelInitializer处理器,期待Channel注册实现后,再向Pipeline中增加ServerBootstrapAcceptor。

ServerBootstrapAcceptor

依照上面的办法演示一下SocketChannel中的Pipeline的构建过程

  1. 启动服务端监听
  2. 在ServerBootstrapAcceptor的channelRead办法中打上断点
  3. 通过telnet 连贯,此时会触发debug。
public void channelRead(ChannelHandlerContext ctx, Object msg) {    final Channel child = (Channel) msg;    child.pipeline().addLast(childHandler);  //在这里,将handler增加到SocketChannel的pipeline中    setChannelOptions(child, childOptions, logger);    setAttributes(child, childAttrs);    try {        //把以后客户端的链接SocketChannel注册到某个EventLoop中。        childGroup.register(child).addListener(new ChannelFutureListener() {            @Override            public void operationComplete(ChannelFuture future) throws Exception {                if (!future.isSuccess()) {                    forceClose(child, future.cause());                }            }        });    } catch (Throwable t) {        forceClose(child, t);    }}

ServerBootstrapAcceptor是服务端NioServerSocketChannel中的一个非凡处理器,该处理器的channelRead事件只会在新连贯产生时触发,所以这里通过 final Channel child = (Channel) msg;能够间接拿到客户端的链接SocketChannel。

ServerBootstrapAcceptor接着通过childGroup.register()办法,把以后NioSocketChannel注册到工作线程中。

事件触发机制的流程

在ServerBootstrapAcceptor中,收到客户端连贯时,会调用childGroup.register(child)把以后客户端连贯注册到指定NioEventLoop的Selector中。

这个注册流程和后面解说的NioServerSocketChannel注册流程齐全一样,最终都会进入到AbstractChannel.register0办法。

AbstractChannel.register0

private void register0(ChannelPromise promise) {    try {        // check if the channel is still open as it could be closed in the mean time when the register        // call was outside of the eventLoop        if (!promise.setUncancellable() || !ensureOpen(promise)) {            return;        }        boolean firstRegistration = neverRegistered;        doRegister();        neverRegistered = false;        registered = true;        // Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the        // user may already fire events through the pipeline in the ChannelFutureListener.        pipeline.invokeHandlerAddedIfNeeded();        safeSetSuccess(promise);        pipeline.fireChannelRegistered(); //执行pipeline中的ChannelRegistered()事件。        // Only fire a channelActive if the channel has never been registered. This prevents firing        // multiple channel actives if the channel is deregistered and re-registered.        if (isActive()) {            if (firstRegistration) {                pipeline.fireChannelActive();            } else if (config().isAutoRead()) {                // This channel was registered before and autoRead() is set. This means we need to begin read                // again so that we process inbound data.                //                // See https://github.com/netty/netty/issues/4805                beginRead();            }        }    } catch (Throwable t) {        // Close the channel directly to avoid FD leak.        closeForcibly();        closeFuture.setClosed();        safeSetFailure(promise, t);    }}

pipeline.fireChannelRegistered()

@Overridepublic final ChannelPipeline fireChannelRegistered() {    AbstractChannelHandlerContext.invokeChannelRegistered(head);    return this;}

上面的事件触发,分为两个逻辑

  • 如果以后的工作是在eventLoop中触发的,则间接调用invokeChannelRegistered
  • 否则,异步执行invokeChannelRegistered。
static void invokeChannelRegistered(final AbstractChannelHandlerContext next) {    EventExecutor executor = next.executor();    if (executor.inEventLoop()) {        next.invokeChannelRegistered();    } else {        executor.execute(new Runnable() {            @Override            public void run() {                next.invokeChannelRegistered();            }        });    }}

invokeChannelRegistered

触发下一个handler的channelRegistered办法。

private void invokeChannelRegistered() {    if (invokeHandler()) {        try {            ((ChannelInboundHandler) handler()).channelRegistered(this);        } catch (Throwable t) {            invokeExceptionCaught(t);        }    } else {        fireChannelRegistered();    }}

Netty服务端启动总结

到此为止,整个服务端启动的过程,咱们就曾经剖析实现了,次要的逻辑如下

  • 创立服务端Channel,实质上是依据用户配置的实现,调用JDK原生的Channel
  • 初始化Channel的外围属性,unsafe、pipeline
  • 初始化Channel的Pipeline,次要是增加两个非凡的处理器,ChannelInitializer和ServerBootstrapAcceptor
  • 注册服务端的Channel,增加OP_ACCEPT事件,这里底层调用的是JDK层面的实现,讲Channel注册到BossEventLoop中的Selector上
  • 绑定端口,调用JDK层面的API,绑定端口。
版权申明:本博客所有文章除特地申明外,均采纳 CC BY-NC-SA 4.0 许可协定。转载请注明来自 Mic带你学架构
如果本篇文章对您有帮忙,还请帮忙点个关注和赞,您的保持是我一直创作的能源。欢送关注同名微信公众号获取更多技术干货!