【 NO.1 统计字符串中的元音子字符串】

解题思路
签到题。

代码展现

class Solution {
public int countVowelSubstrings(String word) {

   int count = 0;   for (int i = 0; i < word.length(); i++) {       for (int j = i + 1; j <= word.length(); j++) {           count += containsAll(word.substring(i, j));      }  }   return count;

}

private int containsAll(String s) {

   if (s.contains("a") && s.contains("e") && s.contains("i") && s.contains("o") && s.contains("u")) {       for (var c : s.toCharArray()) {           if (!"aeiou".contains(String.valueOf(c))) {               return 0;          }      }       return 1;  }   return 0;

}
}

【 NO.2 所有子字符串中的元音】

解题思路
顺次计算每个地位的元音字符会被多少个子串计数即可。

代码展现

class Solution {
public long countVowels(String word) {

   long result = 0;   for (int i = 0; i < word.length(); i++) {       if (!"aeiou".contains(String.valueOf(word.charAt(i)))) {           continue;      }       long left = i;       long right = word.length() - i - 1;       result += left * right + left + right + 1;  }   return result;

}
}

【 NO.3 调配给商店的最多商品的最小值】

解题思路
二分答案,假设一个商店最多能调配 x 个商品,那么咱们能够轻易计算出须要多少个商店,即可失去 n 个商店是否调配完这 m 种商品。

代码展现

class Solution {
public int minimizedMaximum(int n, int[] quantities) {

   int left = 1;   int right = Arrays.stream(quantities).max().getAsInt();   while (left + 1 < right) {       int mid = (left + right) / 2;       if (check(n, quantities, mid)) {           right = mid;      } else {           left = mid;      }  }   return check(n, quantities, left) ? left : right;

}

private boolean check(int n, int[] quantities, int x) {

   int cnt = 0;   for (int q : quantities) {       cnt += (q + x - 1) / x;  }   return cnt <= n;

}
}

【 NO.4 最大化一张图中的门路价值】

解题思路
看似简单,然而察看数据范畴,发现间接回溯即可。

代码展现

class Solution {
int result;
List<Integer> empty = new ArrayList<>();

public int maximalPathQuality(int[] values, int[][] edges, int maxTime) {

   Map<Integer, List<Integer>> children = new HashMap<>();   Map<Integer, Map<Integer, Integer>> times = new HashMap<>();   for (int[] e : edges) {       if (!children.containsKey(e[0])) {           children.put(e[0], new ArrayList<>());      }       if (!children.containsKey(e[1])) {           children.put(e[1], new ArrayList<>());      }       if (!times.containsKey(e[0])) {           times.put(e[0], new HashMap<>());      }       if (!times.containsKey(e[1])) {           times.put(e[1], new HashMap<>());      }       children.get(e[0]).add(e[1]);       children.get(e[1]).add(e[0]);       times.get(e[0]).put(e[1], e[2]);       times.get(e[1]).put(e[0], e[2]);  }   int[] vis = new int[values.length];   result = 0;   dfs(0, 0, 0, maxTime, vis, values, children, times);   return result;

}

private void dfs(int pos, int sum, int time, int maxTime, int[] vis, int[] values, Map<Integer, List<Integer>> children, Map<Integer, Map<Integer, Integer>> times) {

   if (vis[pos] == 0) {       sum += values[pos];  }   vis[pos]++;   if (pos == 0) {       result = Math.max(result, sum);  }   for (int nxt : children.getOrDefault(pos, empty)) {       if (time + times.get(pos).get(nxt) <= maxTime) {           dfs(nxt, sum, time + times.get(pos).get(nxt), maxTime, vis, values, children, times);      }  }   vis[pos]--;

}
}