定义 (维基百科)
在一个序列汇合中(通常为两个序列)查找所有序列中最长的子序列。
这与查找最长公共子串的问题不同的中央是:子序列不须要在原序列中占用间断的地位。
最长公共子序列问题是一个经典的计算机科学问题,
也是数据比拟程序,比方 Diff工具 和 生物信息学利用的根底。
它也被宽泛地利用在 版本控制,比方Git用来和谐文件之间的扭转
解决方案
这类问题通常都是采纳动静布局的思维来解决,外围就是结构出动静解决方程。
以两个序列 X、Y 为例子:
设有二维数组dp[i,j]示意X的第i位和Y的第j位之前的最长公共子序列的长度,则有:
$$ dp[i,j]= \begin{cases} dp[i-1][j-1]+1& \text{(X[i]==Y[j])}\\ max\{dp[i-1,j],dp[i,j-1]\}& \text{(X[i]!=Y[j])} \end{cases}$$
工夫复杂度和空间复杂度都是O(mn)。
力扣水题
func longestCommonSubsequence(text1 string, text2 string) int { len1, len2 := len(text1), len(text2) if len1 == 0 || len2 == 0 { return 0 } commonSub := make([][]int, len1+1, len1+1) // 初始化二维数据 for i := 0; i <= len1; i++ { commonSub[i] = make([]int, len2+1, len2+1) } for i := 0; i < len1; i++ { for j := 0; j < len2; j++ { if text1[i] == text2[j] { commonSub[i+1][j+1] = commonSub[i][j] + 1 } else { commonSub[i+1][j+1] = max(commonSub[i][j+1], commonSub[i+1][j]) } } } return commonSub[len1][len2]}func max(a, b int) int { if a > b { return a } else { return b }}