本我的项目将应用Pytorch,实现一个简略的的音频信号分类器,可利用于机械信号分类辨认,鸟叫声信号辨认等利用场景。

我的项目应用librosa进行音频信号处理,backbone应用mobilenet_v2,在Urbansound8K数据上,最终收敛的准确率在训练集99%,测试集82%,如果想进一步提高辨认准确率能够应用更重的backbone和更多的数据加强办法。

残缺的我的项目代码:https://download.csdn.net/dow...

目录

  1. 我的项目构造
  2. 环境配置

3.数据处理

(1)数据集Urbansound8K

(2)自定义数据集

(3)音频特征提取:

4.训练Pipeline

5.预测demo.py

  1. 我的项目构造
  2. 环境配置
    应用pip命令装置libsora和pyaudio,pydub等库

    3.数据处理

    (1)数据集Urbansound8K
    Urbansound8K是目前利用较为宽泛的用于主动城市环境声分类钻研的公共数据集,
    蕴含10个分类:空调声、汽车鸣笛声、儿童游玩声、狗叫声、钻孔声、引擎空转声、枪声、手提钻、警笛声和街道音乐声。

数据集下载:https://www.ctocio.com/?s=%E9...

(2)自定义数据集
能够本人录制音频信号,制作本人的数据集,参考[audio/dataloader/record_audio.py]
每个文件夹寄存一个类别的音频数据,每条音频数据长度在3秒左右,倡议每类的音频数据平衡
生产train和test数据列表:参考[audio/dataloader/create_data.py]

(3)音频特征提取:
音频信号是一维的语音信号,不能间接用于模型训练,须要应用librosa将音频转为梅尔频谱(Mel Spectrogram)。

librosa提供python接口,在音频、噪音信号的剖析中常常用到

wav, sr = librosa.load(data_path, sr=16000)

应用librosa取得音频的梅尔频谱

spec_image = librosa.feature.melspectrogram(y=wav, sr=sr, hop_length=256)
对于librosa的应用办法,请参考:

音频特征提取——librosa工具包应用
梅尔频谱(mel spectrogram)原理与应用
4.训练Pipeline
(1)构建训练和测试数据

def build_dataset(self, cfg):    """构建训练数据和测试数据"""    input_shape = eval(cfg.input_shape)    # 获取数据    train_dataset = AudioDataset(cfg.train_data, data_dir=cfg.data_dir, mode='train', spec_len=input_shape[3])    train_loader = DataLoader(dataset=train_dataset, batch_size=cfg.batch_size, shuffle=True,                              num_workers=cfg.num_workers)    test_dataset = AudioDataset(cfg.test_data, data_dir=cfg.data_dir, mode='test', spec_len=input_shape[3])    test_loader = DataLoader(dataset=test_dataset, batch_size=cfg.batch_size, shuffle=False,                             num_workers=cfg.num_workers)    print("train nums:{}".format(len(train_dataset)))    print("test  nums:{}".format(len(test_dataset)))    return train_loader, test_loader

因为librosa.load加载音频数据特地慢,倡议应用cache先进行缓存,不便减速

def load_audio(audio_file, cache=False):

"""加载并预处理音频:param audio_file::param cache: librosa.load加载音频数据特地慢,倡议应用进行缓存进行减速:return:"""# 读取音频数据cache_path = audio_file + ".pk"# t = librosa.get_duration(filename=audio_file)if cache and os.path.exists(cache_path):    tmp = open(cache_path, 'rb')    wav, sr = pickle.load(tmp)else:    wav, sr = librosa.load(audio_file, sr=16000)    if cache:        f = open(cache_path, 'wb')        pickle.dump([wav, sr], f)        f.close()# Compute a mel-scaled spectrogram: 梅尔频谱图spec_image = librosa.feature.melspectrogram(y=wav, sr=sr, hop_length=256)return spec_image

(2)构建backbone模型

backbone是一个基于CNN+FC的网络结构,与图像CNN分类模型不同的是,图像CNN分类模型的输出维度(batch,3,H,W)输出数据depth=3,而音频信号的梅尔频谱图是深度为depth=1,能够认为是灰度图,输出维度(batch,1,H,W),因而理论应用中,只须要将传统的CNN图像分类的backbone的第一层卷积层的in_channels=1即可。须要留神的是,因为维度不统一,导致不能应用imagenet的pretrained模型。

当然能够将梅尔频谱图(灰度图)是转为3通道RGB图,这样就跟一般的RGB图像没有什么区别了,也能够imagenet的pretrained模型,如

将梅尔频谱图(灰度图)是转为为3通道RGB图

spec_image = cv2.cvtColor(spec_image, cv2.COLOR_GRAY2RGB)

def build_model(self, cfg):    if cfg.net_type == "mbv2":        model = mobilenet_v2.mobilenet_v2(num_classes=cfg.num_classes)    elif cfg.net_type == "resnet34":        model = resnet.resnet34(num_classes=args.num_classes)    elif cfg.net_type == "resnet18":        model = resnet.resnet18(num_classes=args.num_classes)    else:        raise Exception("Error:{}".format(cfg.net_type))    model.to(self.device)    return model

(3)训练参数配置

相干的命令行参数,可参考:

def get_parser():

data_dir = "/media/pan/新加卷/dataset/UrbanSound8K"# data_dir = "E:/dataset/UrbanSound8K"train_data = 'data/UrbanSound8K/train.txt'test_data = 'data/UrbanSound8K/test.txt'parser = argparse.ArgumentParser(description=__doc__)parser.add_argument('--batch_size', type=int, default=32, help='训练的批量大小')parser.add_argument('--num_workers', type=int, default=4, help='读取数据的线程数量')parser.add_argument('--num_epoch', type=int, default=100, help='训练的轮数')parser.add_argument('--num_classes', type=int, default=10, help='分类的类别数量')parser.add_argument('--learning_rate', type=float, default=1e-3, help='初始学习率的大小')parser.add_argument('--input_shape', type=str, default='(None, 1, 128, 128)', help='数据输出的形态')parser.add_argument('--gpu_id', type=int, default=0, help='GPU ID')parser.add_argument('--net_type', type=str, default="mbv2", help='backbone')parser.add_argument('--data_dir', type=str, default=data_dir, help='数据门路')parser.add_argument('--train_data', type=str, default=train_data, help='训练数据的数据列表门路')parser.add_argument('--test_data', type=str, default=test_data, help='测试数据的数据列表门路')parser.add_argument('--work_dir', type=str, default='work_space/', help='模型保留的门路')return parser

配置好数据门路,其余参数默认设置,即能够开始训练了:

python train.py

训练实现,应用mobilenet_v2,最终训练集准确率99%左右,测试集81%左右,看起来有点过拟合了。

如果想进一步提高辨认准确率能够应用更重的backbone,如resnet34,采纳更多的数据加强办法,进步模型的泛发性。

残缺的训练代码train.py:

--coding: utf-8 --

"""

@Author : panjq@E-mail : pan_jinquan@163.com@Date   : 2021-07-28 09:09:32

"""

import argparse
import os
import numpy as np
import torch
import tensorboardX as tensorboard
from datetime import datetime
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import StepLR, MultiStepLR
from audio.dataloader.audio_dataset import AudioDataset
from audio.utils.utility import print_arguments
from audio.utils import file_utils
from audio.models import mobilenet_v2, resnet

class Train(object):

"""Training  Pipeline"""def __init__(self, cfg):    self.device = "cuda:{}".format(cfg.gpu_id) if torch.cuda.is_available() else "cpu"    self.num_epoch = cfg.num_epoch    self.net_type = cfg.net_type    self.work_dir = os.path.join(cfg.work_dir, self.net_type)    self.model_dir = os.path.join(self.work_dir, "model")    self.log_dir = os.path.join(self.work_dir, "log")    file_utils.create_dir(self.model_dir)    file_utils.create_dir(self.log_dir)    self.tensorboard = tensorboard.SummaryWriter(self.log_dir)    self.train_loader, self.test_loader = self.build_dataset(cfg)    # 获取模型    self.model = self.build_model(cfg)    # 获取优化办法    self.optimizer = torch.optim.Adam(params=self.model.parameters(),                                      lr=cfg.learning_rate,                                      weight_decay=5e-4)    # 获取学习率衰减函数    self.scheduler = MultiStepLR(self.optimizer, milestones=[50, 80], gamma=0.1)    # 获取损失函数    self.losses = torch.nn.CrossEntropyLoss()def build_dataset(self, cfg):    """构建训练数据和测试数据"""    input_shape = eval(cfg.input_shape)    # 获取数据    train_dataset = AudioDataset(cfg.train_data, data_dir=cfg.data_dir, mode='train', spec_len=input_shape[3])    train_loader = DataLoader(dataset=train_dataset, batch_size=cfg.batch_size, shuffle=True,                              num_workers=cfg.num_workers)    test_dataset = AudioDataset(cfg.test_data, data_dir=cfg.data_dir, mode='test', spec_len=input_shape[3])    test_loader = DataLoader(dataset=test_dataset, batch_size=cfg.batch_size, shuffle=False,                             num_workers=cfg.num_workers)    print("train nums:{}".format(len(train_dataset)))    print("test  nums:{}".format(len(test_dataset)))    return train_loader, test_loaderdef build_model(self, cfg):    """构建模型"""    if cfg.net_type == "mbv2":        model = mobilenet_v2.mobilenet_v2(num_classes=cfg.num_classes)    elif cfg.net_type == "resnet34":        model = resnet.resnet34(num_classes=args.num_classes)    elif cfg.net_type == "resnet18":        model = resnet.resnet18(num_classes=args.num_classes)    else:        raise Exception("Error:{}".format(cfg.net_type))    model.to(self.device)    return modeldef epoch_test(self, epoch):    """模型测试"""    loss_sum = []    accuracies = []    self.model.eval()    with torch.no_grad():        for step, (inputs, labels) in enumerate(tqdm(self.test_loader)):            inputs = inputs.to(self.device)            labels = labels.to(self.device).long()            output = self.model(inputs)            # 计算损失值            loss = self.losses(output, labels)            # 计算准确率            output = torch.nn.functional.softmax(output, dim=1)            output = output.data.cpu().numpy()            output = np.argmax(output, axis=1)            labels = labels.data.cpu().numpy()            acc = np.mean((output == labels).astype(int))            accuracies.append(acc)            loss_sum.append(loss)    acc = sum(accuracies) / len(accuracies)    loss = sum(loss_sum) / len(loss_sum)    print("Test epoch:{:3.3f},Acc:{:3.3f},loss:{:3.3f}".format(epoch, acc, loss))    print('=' * 70)    return acc, lossdef epoch_train(self, epoch):    """模型训练"""    loss_sum = []    accuracies = []    self.model.train()    for step, (inputs, labels) in enumerate(tqdm(self.train_loader)):        inputs = inputs.to(self.device)        labels = labels.to(self.device).long()        output = self.model(inputs)        # 计算损失值        loss = self.losses(output, labels)        self.optimizer.zero_grad()        loss.backward()        self.optimizer.step()        # 计算准确率        output = torch.nn.functional.softmax(output, dim=1)        output = output.data.cpu().numpy()        output = np.argmax(output, axis=1)        labels = labels.data.cpu().numpy()        acc = np.mean((output == labels).astype(int))        accuracies.append(acc)        loss_sum.append(loss)        if step % 50 == 0:            lr = self.optimizer.state_dict()['param_groups'][0]['lr']            print('[%s] Train epoch %d, batch: %d/%d, loss: %f, accuracy: %f,lr:%f' % (                datetime.now(), epoch, step, len(self.train_loader), sum(loss_sum) / len(loss_sum),                sum(accuracies) / len(accuracies), lr))    acc = sum(accuracies) / len(accuracies)    loss = sum(loss_sum) / len(loss_sum)    print("Train epoch:{:3.3f},Acc:{:3.3f},loss:{:3.3f}".format(epoch, acc, loss))    print('=' * 70)    return acc, lossdef run(self):    # 开始训练    for epoch in range(self.num_epoch):        train_acc, train_loss = self.epoch_train(epoch)        test_acc, test_loss = self.epoch_test(epoch)        self.tensorboard.add_scalar("train_acc", train_acc, epoch)        self.tensorboard.add_scalar("train_loss", train_loss, epoch)        self.tensorboard.add_scalar("test_acc", test_acc, epoch)        self.tensorboard.add_scalar("test_loss", test_loss, epoch)        self.scheduler.step()        self.save_model(epoch, test_acc)def save_model(self, epoch, acc):    """放弃模型"""    model_path = os.path.join(self.model_dir, 'model_{:0=3d}_{:.3f}.pth'.format(epoch, acc))    if not os.path.exists(os.path.dirname(model_path)):        os.makedirs(os.path.dirname(model_path))    torch.jit.save(torch.jit.script(self.model), model_path)

def get_parser():

data_dir = "/media/pan/新加卷/dataset/UrbanSound8K"# data_dir = "E:/dataset/UrbanSound8K"train_data = 'data/UrbanSound8K/train.txt'test_data = 'data/UrbanSound8K/test.txt'parser = argparse.ArgumentParser(description=__doc__)parser.add_argument('--batch_size', type=int, default=32, help='训练的批量大小')parser.add_argument('--num_workers', type=int, default=4, help='读取数据的线程数量')parser.add_argument('--num_epoch', type=int, default=100, help='训练的轮数')parser.add_argument('--num_classes', type=int, default=10, help='分类的类别数量')parser.add_argument('--learning_rate', type=float, default=1e-3, help='初始学习率的大小')parser.add_argument('--input_shape', type=str, default='(None, 1, 128, 128)', help='数据输出的形态')parser.add_argument('--gpu_id', type=int, default=0, help='GPU ID')parser.add_argument('--net_type', type=str, default="mbv2", help='backbone')parser.add_argument('--data_dir', type=str, default=data_dir, help='数据门路')parser.add_argument('--train_data', type=str, default=train_data, help='训练数据的数据列表门路')parser.add_argument('--test_data', type=str, default=test_data, help='测试数据的数据列表门路')parser.add_argument('--work_dir', type=str, default='work_space/', help='模型保留的门路')return parser

if name == '__main__':

parser = get_parser()args = parser.parse_args()print_arguments(args)t = Train(args)t.run()

5.预测demo.py

--coding: utf-8 --

"""

@Author : panjq@E-mail : pan_jinquan@163.com@Date   : 2021-07-28 09:09:32

"""

import os
import cv2
import argparse
import librosa
import torch
import numpy as np
from audio.dataloader.audio_dataset import load_audio, normalization
from audio.dataloader.record_audio import record_audio
from audio.utils import file_utils, image_utils
https://www.ctocio.com/?s=%E9...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E8...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E5...
https://www.ctocio.com/?s=%E5...

class Predictor(object):

def __init__(self, cfg):    # self.device = "cuda:{}".format(cfg.gpu_id) if torch.cuda.is_available() else "cpu"    self.device = "cpu"    self.input_shape = eval(cfg.input_shape)    self.spec_len = self.input_shape[3]    self.model = self.build_model(cfg.model_file)def build_model(self, model_file):    # 加载模型    model = torch.jit.load(model_file, map_location="cpu")    model.to(self.device)    model.eval()    return modeldef inference(self, input_tensors):    with torch.no_grad():        input_tensors = input_tensors.to(self.device)        output = self.model(input_tensors)    return outputdef pre_process(self, spec_image):    """音频数据预处理"""    if spec_image.shape[1] > self.spec_len:        input = spec_image[:, 0:self.spec_len]    else:        input = np.zeros(shape=(self.spec_len, self.spec_len), dtype=np.float32)        input[:, 0:spec_image.shape[1]] = spec_image    input = normalization(input)    input = input[np.newaxis, np.newaxis, :]    input_tensors = np.concatenate([input])    input_tensors = torch.tensor(input_tensors, dtype=torch.float32)    return input_tensorsdef post_process(self, output):    """输入后果后处理"""    scores = torch.nn.functional.softmax(output, dim=1)    scores = scores.data.cpu().numpy()    # 显示图片并输入后果最大的label    label = np.argmax(scores, axis=1)    score = scores[:, label]    return label, scoredef detect(self, audio_file):    """    :param audio_file: 音频文件    :return: label:预测音频的label             score: 预测音频的置信度    """    spec_image = load_audio(audio_file)    input_tensors = self.pre_process(spec_image)    # 执行预测    output = self.inference(input_tensors)    label, score = self.post_process(output)    return label, scoredef detect_file_dir(self, file_dir):    """    :param file_dir: 音频文件目录    :return:    """    file_list = file_utils.get_files_lists(file_dir, postfix=["*.wav"])    for file in file_list:        print(file)        label, score = self.detect(file)        print(label, score)def detect_record_audio(self, audio_dir):    """    :param audio_dir: 录制音频并进行辨认    :return:    """    time = file_utils.get_time()    file = os.path.join(audio_dir, time + ".wav")    record_audio(file)    label, score = self.detect(file)    print(file)    print(label, score)

def get_parser():

model_file = 'data/pretrained/model_060_0.827.pth'file_dir = 'data/audio'parser = argparse.ArgumentParser(description=__doc__)parser.add_argument('--num_classes', type=int, default=10, help='分类的类别数量')parser.add_argument('--input_shape', type=str, default='(None, 1, 128, 128)', help='数据输出的形态')parser.add_argument('--net_type', type=str, default="mbv2", help='backbone')parser.add_argument('--gpu_id', type=int, default=0, help='GPU ID')parser.add_argument('--model_file', type=str, default=model_file, help='模型文件')parser.add_argument('--file_dir', type=str, default=file_dir, help='音频文件的目录')return parser

if name == '__main__':

parser = get_parser()args = parser.parse_args()p = Predictor(args)p.detect_file_dir(file_dir=args.file_dir)# audio_dir = 'data/record_audio'