1.摘要

本次是第六篇,解说V8中形象语法树(abstract syntax code,AST)到字节码(bytecode)的翻译过程。AST是源代码的形象语法结构的树状示意,是语法分析的输入后果,bytecode是一种体系结构无关的、在V8中能够运行的形象机器码,不依赖指令集。本文中,咱们以AST作为V8输出,从AST生成后开始调试(Debug),解说bytecode生成过程,剖析外围源码和重要数据结构,如图1所示。本文内容的组织形式:介绍字节码,解说字节码原理,如何看懂字节码(章节2);AST到bytecode的翻译过程、源码剖析(章节3)。

2.字节码介绍

字节码是机器码的形象示意,采纳和物理CPU雷同的计算模型进行设计。字节码是最小性能齐备集,JavaScript源码的任何性能都能够等价转换成字节码的组合。V8有数以百计的字节码,例如AddSub等简略操作,还有LdaNamedProperty等属性加载操作。每个字节码都能够指定寄存器作为其操作数,生成字节码的过程中应用寄存器 r0,r1,r2,... 和累加寄存器(accumulator register)。累加器是和其它寄存器一样的惯例寄存器,但不同的是累加器的操作没有显式给出指令,具体来说,Add r1将寄存器r1中的值和累加器中的值进行加法运算,在这个过程不须要显示指出累加器。字节码的定义在v8/src/interpreter/bytecodes.h中,上面展现一部分相干源码。

#define BYTECODE_LIST_WITH_UNIQUE_HANDLERS(V)                                  \  /* Extended width operands */                                                \  V(Wide, ImplicitRegisterUse::kNone)                                          \  V(ExtraWide, ImplicitRegisterUse::kNone)                                     \                                                                               \  /* Debug Breakpoints - one for each possible size of unscaled bytecodes */   \  /* and one for each operand widening prefix bytecode                    */   \  V(DebugBreakWide, ImplicitRegisterUse::kReadWriteAccumulator)                \  V(DebugBreakExtraWide, ImplicitRegisterUse::kReadWriteAccumulator)           \  V(DebugBreak0, ImplicitRegisterUse::kReadWriteAccumulator)                   \  V(DebugBreak1, ImplicitRegisterUse::kReadWriteAccumulator,                   \    OperandType::kReg)                                                         \  V(DebugBreak2, ImplicitRegisterUse::kReadWriteAccumulator,                   \    OperandType::kReg, OperandType::kReg)                                      \  V(DebugBreak3, ImplicitRegisterUse::kReadWriteAccumulator,                   \    OperandType::kReg, OperandType::kReg, OperandType::kReg)                   \  V(DebugBreak4, ImplicitRegisterUse::kReadWriteAccumulator,                   \    OperandType::kReg, OperandType::kReg, OperandType::kReg,                   \    OperandType::kReg)                                                         \  V(DebugBreak5, ImplicitRegisterUse::kReadWriteAccumulator,                   \    OperandType::kRuntimeId, OperandType::kReg, OperandType::kReg)             \  V(DebugBreak6, ImplicitRegisterUse::kReadWriteAccumulator,                   \    OperandType::kRuntimeId, OperandType::kReg, OperandType::kReg,             \    OperandType::kReg)                                                         \                                                                               \  /* Side-effect-free bytecodes -- carefully ordered for efficient checks */   \  /* - [Loading the accumulator] */                                            \  V(Ldar, ImplicitRegisterUse::kWriteAccumulator, OperandType::kReg)           \  V(LdaZero, ImplicitRegisterUse::kWriteAccumulator)                           \  V(LdaSmi, ImplicitRegisterUse::kWriteAccumulator, OperandType::kImm)         \  V(LdaUndefined, ImplicitRegisterUse::kWriteAccumulator)                      \  V(LdaNull, ImplicitRegisterUse::kWriteAccumulator)                           \  V(LdaTheHole, ImplicitRegisterUse::kWriteAccumulator)                        \  V(LdaTrue, ImplicitRegisterUse::kWriteAccumulator)                           \  V(LdaFalse, ImplicitRegisterUse::kWriteAccumulator)                          \  V(LdaConstant, ImplicitRegisterUse::kWriteAccumulator, OperandType::kIdx)    \  V(LdaContextSlot, ImplicitRegisterUse::kWriteAccumulator, OperandType::kReg, \    OperandType::kIdx, OperandType::kUImm)                                     \  V(LdaImmutableContextSlot, ImplicitRegisterUse::kWriteAccumulator,           \    OperandType::kReg, OperandType::kIdx, OperandType::kUImm)                  \  V(LdaCurrentContextSlot, ImplicitRegisterUse::kWriteAccumulator,             \    OperandType::kIdx)                                                         \  V(LdaImmutableCurrentContextSlot, ImplicitRegisterUse::kWriteAccumulator,    \    OperandType::kIdx)                                                         \  /* - [Register Loads ] */                                                    \  V(Star, ImplicitRegisterUse::kReadAccumulator, OperandType::kRegOut)         \  V(Mov, ImplicitRegisterUse::kNone, OperandType::kReg, OperandType::kRegOut)  \  V(PushContext, ImplicitRegisterUse::kReadAccumulator, OperandType::kRegOut)  \  V(PopContext, ImplicitRegisterUse::kNone, OperandType::kReg)                 \  /* - [Test Operations ] */                                                   \  V(TestReferenceEqual, ImplicitRegisterUse::kReadWriteAccumulator,            \    OperandType::kReg)                                                         \  V(TestUndetectable, ImplicitRegisterUse::kReadWriteAccumulator)              \  V(TestNull, ImplicitRegisterUse::kReadWriteAccumulator)                      \  V(TestUndefined, ImplicitRegisterUse::kReadWriteAccumulator)                 \  V(TestTypeOf, ImplicitRegisterUse::kReadWriteAccumulator,                    \    OperandType::kFlag8)                                                       \//.........省略很多.....

下面这段代码是字节码的宏定义,用语句V(Ldar, ImplicitRegisterUse::kWriteAccumulator, OperandType::kReg)举例说明,Ldar是加载数据到累加器,ImplicitRegisterUse::kWriteAccumulator, OperandType::kReg阐明了Ldar指令的源操作数和目标操作数,具体讲两条字节码的含意,如下:
(1) LdaSmi [1],这里的[1]是Smi小整型(small int)常量,加载到累加器中,如图2所示。

(2) Star r1,这里的r1是r1寄存器,把累加器中的值写入到r1寄存器,目前累加器的值为1,执行完后r1的值为1,如图3所示。

其它字节码指令参见V8的指令定义文件,这里不再赘述。V8为了晋升性能,会把屡次执行的字节码标记为热点代码,应用优化编译器(TurboFan)把热点代码翻译成机器相干的本地指令,达到进步运行效率的目标,如图4所示。

解释器将AST翻译成字节码比TurboFan用时更短,对于运行次数较少的代码十分适合,即不在运行次数较少的代码上付出更高的编译代价。TurboFan则是对罕用代码(热点代码)进行本地化编译,生成体系结构相干的机器码,这须要更长的编译工夫,换来的是更快的执行速度。
去优化,是将机器码转成字节码,为什么要这样做?起因有很多,具体起因参见TurboFan的定义文件。这里说一个与技术开发人员相干的起因:调试javascript源码,对源码进行调试时,须要转回字节码。

3.字节码生成

聊字节码生成之前,先要看明确AST树的构造,明确了AST树结构,也就晓得了字节码生成其实是遍历树的过程,落地到程序上就是一个无限状态自动机,具体实现就是switch case配合一些预设的宏定义模板,图5给出了AST的数据结构。

AST树的每个节点都继承自AstNode这个类,能够说所有皆“AstNode”。AstNode的成员办法是最多的,在泛滥办法中,AstNode的NodeType办法无疑是最重要的,因为把一个AstNode节点翻译成字节码时,首先,依据NodeType把父类AstNode转成具体的子类,比方,转成表达式(ExPRESSION)或语句(STATEMENT);其次,能力读取相应的数据、生成字节码,上面的代码是AstNode转成Assignment的具体实现。

void BytecodeGenerator::VisitAssignment(Assignment* expr) {  AssignmentLhsData lhs_data = PrepareAssignmentLhs(expr->target());  VisitForAccumulatorValue(expr->value());  builder()->SetExpressionPosition(expr);  BuildAssignment(lhs_data, expr->op(), expr->lookup_hoisting_mode());}

在这段代码中,计算expr->target(),expr->value(),expr->op()时可能会产生递归调用,因为表达式内能够蕴含多个子表达式。

void BytecodeGenerator::GenerateBytecodeBody() {  // Build the arguments object if it is used.  VisitArgumentsObject(closure_scope()->arguments());  // Build rest arguments array if it is used.  Variable* rest_parameter = closure_scope()->rest_parameter();  VisitRestArgumentsArray(rest_parameter);  // Build assignment to the function name or {.this_function}  // variables if used.  VisitThisFunctionVariable(closure_scope()->function_var());  VisitThisFunctionVariable(closure_scope()->this_function_var());  // Build assignment to {new.target} variable if it is used.  VisitNewTargetVariable(closure_scope()->new_target_var());  // Create a generator object if necessary and initialize the  // {.generator_object} variable.  FunctionLiteral* literal = info()->literal();  if (IsResumableFunction(literal->kind())) {    BuildGeneratorObjectVariableInitialization();  }  // Emit tracing call if requested to do so.  if (FLAG_trace) builder()->CallRuntime(Runtime::kTraceEnter);  // Emit type profile call.  if (info()->flags().collect_type_profile()) {    feedback_spec()->AddTypeProfileSlot();    int num_parameters = closure_scope()->num_parameters();    for (int i = 0; i < num_parameters; i++) {      Register parameter(builder()->Parameter(i));      builder()->LoadAccumulatorWithRegister(parameter).CollectTypeProfile(          closure_scope()->parameter(i)->initializer_position());    }  }  // Increment the function-scope block coverage counter.  BuildIncrementBlockCoverageCounterIfEnabled(literal, SourceRangeKind::kBody);  // Visit declarations within the function scope.  if (closure_scope()->is_script_scope()) {    VisitGlobalDeclarations(closure_scope()->declarations());  } else if (closure_scope()->is_module_scope()) {    VisitModuleDeclarations(closure_scope()->declarations());  } else {    VisitDeclarations(closure_scope()->declarations());  }  // Emit initializing assignments for module namespace imports (if any).  VisitModuleNamespaceImports();  // The derived constructor case is handled in VisitCallSuper.  if (IsBaseConstructor(function_kind())) {    if (literal->class_scope_has_private_brand()) {      BuildPrivateBrandInitialization(builder()->Receiver());    }    if (literal->requires_instance_members_initializer()) {      BuildInstanceMemberInitialization(Register::function_closure(),                                        builder()->Receiver());    }  }  // Visit statements in the function body.  VisitStatements(literal->body());  // Emit an implicit return instruction in case control flow can fall off the  // end of the function without an explicit return being present on all paths.  if (!builder()->RemainderOfBlockIsDead()) {    builder()->LoadUndefined();    BuildReturn(literal->return_position());  }}

下面的函数是生成bytecode的入口,最终进入VisitStatements(literal->body());,从这里开始生成bytecode,在生成byteocde之前要先应用AstNode->XXXtype()获取子类的具体类型,上面给出XXXtype的具体实现。

#define DECLARATION_NODE_LIST(V) \  V(VariableDeclaration)         \  V(FunctionDeclaration)#define ITERATION_NODE_LIST(V) \  V(DoWhileStatement)          \  V(WhileStatement)            \  V(ForStatement)              \  V(ForInStatement)            \  V(ForOfStatement)#define BREAKABLE_NODE_LIST(V) \  V(Block)                     \  V(SwitchStatement)#define STATEMENT_NODE_LIST(V)       \  ITERATION_NODE_LIST(V)             \  BREAKABLE_NODE_LIST(V)             \  V(ExpressionStatement)             \  V(EmptyStatement)                  \  V(SloppyBlockFunctionStatement)    \  V(IfStatement)                     \  V(ContinueStatement)               \  V(BreakStatement)                  \  V(ReturnStatement)                 \  V(WithStatement)                   \  V(TryCatchStatement)               \  V(TryFinallyStatement)             \  V(DebuggerStatement)               \  V(InitializeClassMembersStatement) \  V(InitializeClassStaticElementsStatement)#define LITERAL_NODE_LIST(V) \  V(RegExpLiteral)           \  V(ObjectLiteral)           \  V(ArrayLiteral)#define EXPRESSION_NODE_LIST(V) \  LITERAL_NODE_LIST(V)          \  V(Assignment)                 \  V(Await)                      \  V(BinaryOperation)            \//............代码太长,省略很多  V(YieldStar)#define FAILURE_NODE_LIST(V) V(FailureExpression)#define AST_NODE_LIST(V)                        \  DECLARATION_NODE_LIST(V)                      \  STATEMENT_NODE_LIST(V)                        \  EXPRESSION_NODE_LIST(V)//=========分隔线===============================#define GENERATE_VISIT_CASE(NodeType)                                   \  case AstNode::k##NodeType:                                            \    return this->impl()->Visit##NodeType(static_cast<NodeType*>(node));#define GENERATE_FAILURE_CASE(NodeType) \  case AstNode::k##NodeType:            \    UNREACHABLE();//=========分隔线===============================#define GENERATE_AST_VISITOR_SWITCH()        \  switch (node->node_type()) {               \    AST_NODE_LIST(GENERATE_VISIT_CASE)       \    FAILURE_NODE_LIST(GENERATE_FAILURE_CASE) \  }#define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS()               \ public:                                                    \  void VisitNoStackOverflowCheck(AstNode* node) {           \    GENERATE_AST_VISITOR_SWITCH()                           \  }                                                         \                                                            \  void Visit(AstNode* node) {                               \    if (CheckStackOverflow()) return;                       \    VisitNoStackOverflowCheck(node);                        \  }                                                         \

上述代码中,隔开的三局部代码,组成了AstNode中所有类型(NodeType)的switch语句,第一局部代码和图5的节点类型一一对应。

void BytecodeGenerator::VisitStatements(    const ZonePtrList<Statement>* statements) {  for (int i = 0; i < statements->length(); i++) {    // Allocate an outer register allocations scope for the statement.    RegisterAllocationScope allocation_scope(this);    Statement* stmt = statements->at(i);    Visit(stmt);    if (builder()->RemainderOfBlockIsDead()) break;  }}

上述代码是bytecode生成的入口,请读者应用图1的样例代码自行跟踪,图6给出VisitStatements的函数调用堆栈。

V8中AST到字节码的翻译过程,与编译LLVM中AST到三地址码的翻译类似,读者可自行查阅编译技术相干材料。
好了,明天到这里,下次见。
恳请读者批评指正、提出宝贵意见
微信:qq9123013 备注:v8交换 邮箱:v8blink@outlook.com