学习笔记
https://www.bilibili.com/vide...
记忆化递归
fib
个别实现
const fib = n => { if (n === 1 || n === 2) return 1 return fib(n - 1) + fib(n - 2)}console.log(fib(6))console.log(fib(7))console.log(fib(8))console.log(fib(50)) // 卡住了
这样的递归会在每次都计算一次, 造成屡次调用屡次
优化
咱们考虑一下如何优化这个过程
思考一个简化版的模型, 咱们的察看一个这样的函数
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424212442.png" alt="image-20210424212441886" style="zoom: 33%;" />
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424212528.png" alt="image-20210424212528537" style="zoom:33%;" />
当咱们递归两次的时候
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424214021.png" alt="image-20210424214021162" style="zoom:25%;" />
所以咱们之前的fib工夫复杂度是
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424214105.png" alt="image-20210424214105560" style="zoom:25%;" />
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424214124.png" alt="image-20210424214124868" style="zoom:25%;" />
这真是太蹩脚了
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424214204.png" alt="image-20210424214203954" style="zoom:33%;" />
带有记忆的遍历就是dp
// memoization// js obj, keys: arg, value returns// 批改1 设置memo和初始值const fib = (n, memo = {}) => { // 批改2 查看是否有记忆 if (n in memo) return memo[n] if (n === 1 || n === 2) return 1 // 批改3 递归的时候带上咱们的援用 memo[n] = fib(n - 1, memo) + fib(n - 2, memo) return memo[n]}console.log(fib(6))console.log(fib(7))console.log(fib(8))console.log(fib(50)) // 很快就出后果了
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424214945.png" alt="image-20210424214945777" style="zoom: 33%;" />
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215111.png" alt="image-20210424215111089" style="zoom: 33%;" />
旅行者gridTraveler
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215247.png" alt="image-20210424215247677" style="zoom: 33%;" />
咱们从极简模式开始剖析
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215420.png" alt="image-20210424215420703" style="zoom: 25%;" />
其实这也是一种边界状况
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215509.png" alt="image-20210424215509651" style="zoom:25%;" />
简略状况
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215956.png" alt="image-20210424215956243" style="zoom: 25%;" />
每挪动一步, 问题将会简化
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424220036.png" alt="image-20210424220036796" style="zoom: 25%;" />
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424220109.png" alt="image-20210424220109627" style="zoom:25%;" />
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424220123.png" alt="image-20210424220123824" style="zoom:25%;" />
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424220129.png" alt="image-20210424220129754" style="zoom:25%;" />
所以咱们能够这样想这个问题
具象化的了解就是
递归版
const gridTraveler = (m, n) => { if (m === 1 && n === 1) return 1 if (m === 0 || n === 0) return 0 return gridTraveler(m - 1, n) + gridTraveler(m, n - 1)}console.log(gridTraveler(1,2))console.log(gridTraveler(3,2))console.log(gridTraveler(3,3))console.log(gridTraveler(18,18))
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424221012.png" alt="image-20210424221012313" style="zoom: 25%;" />
dp版
const gridTraveler = (m, n, memo = {}) => { const key = `${m}+${n}` if (key in memo) return memo[key] if (m === 1 && n === 1) return 1 if (m === 0 || n === 0) return 0 memo[key] = gridTraveler(m - 1, n, memo) + gridTraveler(m, n - 1, memo) return memo[key]}console.log(gridTraveler(1, 2))console.log(gridTraveler(3, 2))console.log(gridTraveler(3, 3))console.log(gridTraveler(18, 18))
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424225418.png" alt="image-20210424225417863" style="zoom:25%;" />
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424225436.png" alt="image-20210424225436220" style="zoom: 33%;" />
这类问题的总结
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210426082533.png" alt="image-20210426082533672" style="zoom: 33%;" />
胜利最小后果和失败最小后果
canSum
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210426082650.png" alt="image-20210426082650351" style="zoom: 50%;" />
逆向思维: 求和到定值->应用定值遍历数组减到0
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210426083039.png" alt="image-20210426083039761" style="zoom:50%;" />
递归
我的解法
const canSum = (targetSum, numbers) => { if (targetSum === 0) return true if (targetSum < 0) return false let remainder for (let num of numbers) { remainder = remainder || canSum(targetSum - num, numbers) } return remainder}console.log(canSum(7, [3, 2]))console.log(canSum(7, [4, 2]))console.log(canSum(7, [5, 6, 2]))console.log(canSum(300, [7, 14]))
视频解法
const canSum = (targetSum, numbers) => { if (targetSum === 0) return true if (targetSum < 0) return false for (let num of numbers) { if (canSum(targetSum - num, numbers)) return true } return false}
视频解法递归次数更少
dp
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210426084656.png" alt="image-20210426084655947" style="zoom: 33%;" />
const canSum = (targetSum, numbers, memo = {}) => { if (targetSum in memo) return memo[targetSum] if (targetSum === 0) return true if (targetSum < 0) return false for (const num of numbers) { memo[targetSum] = canSum(targetSum - num, numbers, memo) if (memo[targetSum]) return true } return false}console.log(canSum(7, [3, 2]))console.log(canSum(7, [4, 2]))console.log(canSum(7, [5, 6, 2]))console.log(canSum(300, [7, 14]))
howSum
递归版
const howSum = (targetSum, numbers) => { if (targetSum === 0) return [] if (targetSum < 0) return null for (const num of numbers) { const remainder = targetSum - num const remainderResult = howSum(remainder, numbers) if (remainderResult !== null) return [...remainderResult, num] } return null}console.log(howSum(7, [3, 2]))console.log(howSum(7, [4, 2]))console.log(howSum(7, [5, 6, 2]))console.log(howSum(300, [7, 14]))
dp版
const howSum = (targetSum, numbers, memo = {}, path = []) => { if (targetSum in memo) return memo[targetSum] if (targetSum === 0) return [] if (targetSum < 0) return null for (const num of numbers) { const remainder = targetSum - num const remainderResult = howSum(remainder, numbers, memo) if (remainderResult !== null) { memo[targetSum] = [...remainderResult, num] return memo[targetSum] } } memo[targetSum] = null // 不可达也须要记录 return memo[targetSum]}console.log(howSum(7, [3, 2]))console.log(howSum(7, [4, 2]))console.log(howSum(7, [4, 3, 2]))console.log(howSum(7, [5, 6, 2]))console.log(howSum(300, [7, 14]))
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210426093959.png" alt="image-20210426093958932" style="zoom:33%;" />
bestSum
tips: 应用递归的思路
- 想好进口, 边界条件, 失败胜利条件
- 调用递归函数的时候要假如递归函数能获取到你想要的后果
递归版
const bestSum = (targetSum, numbers, lastBest) => { if (targetSum === 0) return [] if (targetSum < 0) return null let shortestCombination = null for (const num of numbers) { const remainder = targetSum - num const remainderCombination = bestSum(remainder, numbers) if (remainderCombination !== null) { const combination = [...remainderCombination, num] if ( shortestCombination === null || combination.length < shortestCombination.length ) shortestCombination = combination } } return shortestCombination}console.log(bestSum(7, [1, 3, 2, 7])) // [7]console.log(bestSum(7, [1, 4, 2])) // [2,4,1]console.log(bestSum(7, [1, 4, 3, 2])) // [3,4]console.log(bestSum(7, [1, 5, 6, 2])) // [6, 1]console.log(bestSum(100, [1, 2, 3, 14]))
dp版
const bestSum = (targetSum, numbers, memo = {}) => { if (targetSum in memo) return memo[targetSum] if (targetSum === 0) return [] if (targetSum < 0) return null let shortestCombination = null for (const num of numbers) { const remainder = targetSum - num const remainderCombination = bestSum(remainder, numbers, memo) if (remainderCombination !== null) { const combination = [...remainderCombination, num] if ( shortestCombination === null || combination.length < shortestCombination.length ) shortestCombination = combination } } memo[targetSum] = shortestCombination return memo[targetSum]}console.log(bestSum(7, [1, 3, 2, 7])) // [7]console.log(bestSum(7, [1, 4, 2])) // [2,4,1]console.log(bestSum(7, [1, 4, 3, 2])) // [3,4]console.log(bestSum(7, [1, 5, 6, 2])) // [6, 1]console.log(bestSum(100, [1, 2, 3, 5, 10, 40])) //[ 40, 40, 10, 10 ]
这三个问题的总结
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210428202031.png" alt="image-20210428202030984" style="zoom:50%;" />
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210428202122.png" alt="image-20210428202122564" style="zoom:50%;" />
canConstruct
很显然, 这和canSum是一类问题
寻找这个问题的边界条件, 也就是递归终止条件, 一直缩小字符的长度, 直到为空即可, 失败就是残余的字符的子字符不在wordbank外面
问题来了1. 如何存储曾经匹配的字符? 如何判断以后字符曾经不能再被匹配了?
递归版
我的实现(谬误版)
每次胜利匹配后, 就宰割字符串, 顺次查问取后果的和运算后果, 当字符串是空为胜利后果, 循环完了没有符合条件, 有一个宰割后的子串不能满足状况的是失败后果
const canConstruct = (target, wordBank) => { if (target === '') return true for (const word of wordBank) { if (target.indexOf(word) !== -1) { return target .split(word, 2) .reduce( (pre, targetStr) => pre && canConstruct(targetStr, wordBank), true ) } } return false}console.log(canConstruct('', ['cat']))console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))console.log(canConstruct('CatVsDog', ['Cat', 'Dog', 'Vs']))
认真想一下, 这个有一个很大的问题, 就是程序匹配到第一个宰割点后间接返回, 没有查看第二个宰割点是否还能满足条件
console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))// 本该为true, 输入false
所以作出这样的批改
const canConstruct = (target, wordBank) => { if (target === '') return true return wordBank.reduce((pre, word) => { if (target.indexOf(word) !== -1) { return ( pre || target .split(word, 2) .reduce( (pre, targetStr) => pre && canConstruct(targetStr, wordBank), true ) ) } return pre }, false)}console.log(canConstruct('', ['cat']))console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
这样就能够解决那个问题了, 然而这样又有一个不太好的中央就是, 不能见好就收, 找到pre是true的时候就可停下来了, 所以, 咱们能够应用some来代替, some 在返回true的时候会进行循环, 相似的every将会在返回false的时候跳出循环.
当然还能够应用throw+trycatch实现终止循环, 然而那样太奇怪了, 很反模式, 不过我还是实现了一下
some/every优化版
const canConstruct = (target, wordBank) => { if (target === '') return true console.log(target, wordBank) return wordBank.some( word => target.indexOf(word) !== -1 && target.split(word, 2).every(subStr => canConstruct(subStr, wordBank)) )}console.log(canConstruct('', ['cat']))console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
try-catch版
看着就恶心
const canConstruct = (target, wordBank) => { if (target === '') return true try { return wordBank.reduce((pre, word) => { if (pre === true) throw new Error(true) if (target.indexOf(word) !== -1) { return ( pre || target .split(word, 2) .reduce( (pre, targetStr) => pre && canConstruct(targetStr, wordBank), true ) ) } return pre }, false) } catch (e) { // console.log(typeof e.message) // 留神这里会把boolean转成string, 间接return ture 就好了 return true } return false}console.log(canConstruct('', ['cat']))console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
视频的实现
咱们能够从左到右顺次查看是否是子串, 这样就能够省很多事件, 而且递归的时候能够不须要查看两边的是否都满足
这体现了一种转换的思路
const canConstruct = (target, wordBank) => { if (target === '') return true for (const word of wordBank) { if (target.indexOf(word) === 0) { const suffix = target.slice(word.length) if (canConstruct(suffix, wordBank) === true) return true } } return false}console.log(canConstruct('', ['cat']))console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
之前忘了压力测试的用例了, 不必想, 必定都跑不完
console.log( canConstruct('eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeef', [ 'e', 'ee', 'eee', 'eeee' ]))
我的实现(正确版)
啊这, 过压力测试用例的时候, 发现: 应用split将会把每个e都宰割掉, 所以会失去['','']
的后果, 所以会错
所以须要实现一个只宰割一次的函数
const canConstruct = (target, wordBank) => { if (target === '') return true return wordBank.some( word => target.indexOf(word) !== -1 && splitOnce(target, word).every(subStr => canConstruct(subStr, wordBank)) )}// 只宰割一次的函数const splitOnce = (str, sign) => { const index = str.indexOf(sign) if (index === -1) return [str] return [str.slice(0, index), str.slice(index + sign.length)]}console.log(canConstruct('', ['cat']))console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))console.log( canConstruct('eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeef', [ 'ef', 'eeeeeeeeeee' ]))console.log( canConstruct('eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeef', [ 'e', 'ee', 'eee', 'eeeeeeeeeee' ]))
dp版
我的实现
const canConstruct = (target, wordBank, memo = {}) => { if (target in memo) return memo[target] if (target === '') return true memo[target] = wordBank.some( word => target.indexOf(word) !== -1 && splitOnce(target, word).every(subStr => canConstruct(subStr, wordBank, memo) ) ) return memo[target]}const splitOnce = (str, sign) => { const index = str.indexOf(sign) if (index === -1) return [str] return [str.slice(0, index), str.slice(index + sign.length)]}
视频实现
const canConstruct = (target, wordBank, memo = {}) => { if (target in memo) return memo[target] if (target === '') return true memo[target] = false for (const word of wordBank) { if (target.indexOf(word) === 0) { const suffix = target.slice(word.length) if (canConstruct(suffix, wordBank, memo) === true){ memo[target] = true return true } } } return memo[target]}
countConstruct
递归版
我的实现
const countConstruct = (target, wordBank, counter = 0) => { if (target === '') return counter + 1 for (const word of wordBank) { if (target.indexOf(word) === 0) { const suffix = target.slice(word.length) counter = countConstruct(suffix, wordBank, counter) } } return counter}
视频实现
const countConstruct = (target, wordBank) => { if (target === '') return 1 let counter = 0 for (const word of wordBank) if (target.indexOf(word) === 0) counter += countConstruct(target.slice(word.length), wordBank) return counter}
dp版
const countConstruct = (target, wordBank, memo = {}) => { if (target in memo) return memo[target] if (target === '') return 1 let counter = 0 for (const word of wordBank) if (target.indexOf(word) === 0) counter += countConstruct(target.slice(word.length), wordBank, memo) memo[target] = counter return memo[target]}
我感觉我曾经挺纯熟了
allConstruct
递归版
我的实现
const allConstruct = (target, wordBank) => { const path = [] helper(target, wordBank, [], path) return path}const helper = (target, wordBank, currentPath = [], path = []) => { if (target === '' && currentPath.length !== 0) { path.push([...currentPath]) } for (const word of wordBank) { if (target.indexOf(word) === 0) { const preCur = [...currentPath] // key: 保留之前的状态, 每次获取子元素的子门路后还回去 currentPath.push(word) helper(target.slice(word.length), wordBank, currentPath, path) currentPath = preCur } }}
说句实话我也不晓得我在写啥
视频实现
const allConstruct = (target, wordBank) => { if (target === '') return [[]] const result = [] for (const word of wordBank) { if (target.indexOf(word) === 0) { const suffix = target.slice(word.length) const suffixWays = allConstruct(suffix, wordBank) const targetWays = suffixWays.map(way => [word, ...way]) result.push(...targetWays) } } return result}
dp版
const allConstruct = (target, wordBank, memo = {}) => { if (target in memo) return memo[target] if (target === '') return [[]] const result = [] for (const word of wordBank) { if (target.indexOf(word) === 0) { const suffix = target.slice(word.length) const suffixWays = allConstruct(suffix, wordBank, memo) const targetWays = suffixWays.map(way => [word, ...way]) result.push(...targetWays) } } memo[target] = result return result}
列表化tabulation
勾销递归, 应用数组记录, 钻研每个之前状况对之后状况的影响
fib(nth)
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210504090006.png" alt="image-20210504090006324" style="zoom:50%;" />
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210504090048.png" alt="image-20210504090048196" style="zoom: 33%;" />
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210504090113.png" alt="image-20210504090113448" style="zoom:25%;" />
const fib = n => { const table = Array(n + 1).fill(0) // 初始化 table[1] = 1 // 开始, 人工赋值 for (let i = 0; i < n; i++) { // 每个格子会影响前面的两个格子 table[i + 1] += table[i] table[i + 2] += table[i] } return table[n]}console.log(fib(6))console.log(fib(7))console.log(fib(8))console.log(fib(50)) // 很快就出后果了
gridTraveler
<img src="https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215247.png" alt="image-20210424215247677" style="zoom: 33%;" />
const gridTraveler = (m, n) => { const table = Array(m + 1) .fill() //undefined 不能map .map(() => Array(n + 1).fill(0)) //间接full会指向雷同的援用 table[1][1] = 1 for (let i = 0; i <= m; i++) { for (let j = 0; j <= n; j++) { if (i + 1 <= m) table[i + 1][j] += table[i][j] // 二维数组左值边界查看 if (j + 1 <= n) table[i][j + 1] += table[i][j] } } return table[m][n]}console.log(gridTraveler(3, 2))
这类问题的总结
- 布局你的table记录什么
- 找出你的table的size , 维度
- 初始化table的值是多少
- 找到更新table的初值种子 (寻找那个和决定/随机/资源没有关系的状况 个别是0/1)
- 迭代更新table
- 考查每个格子对将来的格子的影响
canSum
target是0的时候, 肯定是true
const canSum = (targetSum, numbers) => { const table = Array(targetSum + 1).fill(false) table[0] = true for (let i = 0; i <= targetSum; i++) { if (table[i] === true) numbers.forEach(number => { table[number + i] = true }) } return table[targetSum]}console.log(canSum(7, [3, 2]))console.log(canSum(7, [4, 2]))console.log(canSum(7, [5, 6, 2]))console.log(canSum(300, [7, 14]))
小哥陷入有限循环的问题: 不要时刻判断length,这样不好
howSum
const howSum = (targetSum, numbers) => { const table = Array(targetSum + 1).fill(null) table[0] = [] for (let i = 0; i <= targetSum; i++) { if (table[i] !== null) numbers.forEach(number => { table[number + i] = [...table[i], number] }) } return table[targetSum]}console.log(howSum(7, [3, 2]))console.log(howSum(7, [4, 2]))console.log(howSum(7, [5, 6, 2]))console.log(howSum(300, [7, 14]))
bestSum
const bestSum = (targetSum, numbers) => { const table = Array(targetSum + 1).fill(null) table[0] = [] for (let i = 0; i <= targetSum; i++) { if (table[i] !== null) numbers.forEach(number => { if (!table[number + i] || table[number + i].length > table[i].length) // 如果是null须要给予初值 table[number + i] = [...table[i], number] }) } return table[targetSum]}console.log(bestSum(7, [3, 2]))console.log(bestSum(7, [4, 2]))console.log(bestSum(7, [5, 6, 2]))console.log(bestSum(300, [7, 14]))
canConstruct
const canConstruct = (target, wordBank) => { const table = Array(target.length + 1).fill(false) table[0] = true for (let i = 0; i <= target.length; i++) { if (table[i] === true) wordBank.forEach(word => { if (target.slice(i, i + word.length) === word) table[i + word.length] = true }) } return table[target.length]}console.log(canConstruct('', ['cat']))console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))console.log(canConstruct('CatVsDog', ['Cat', 'V', 's', 'Dog']))console.log( canConstruct('eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeef', [ 'ef', 'eeeeeeeeeee' ]))console.log( canConstruct('eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeef', [ 'e', 'ee', 'eee', 'eeeeeeeeeee' ]))
countConstruct
const countSum = (target, wordBank) => { const table = Array(target.length + 1).fill(0) table[0] = 1 for (let i = 0; i <= target.length; i++) { if (table[i] !== 0) wordBank.forEach(word => { if (target.slice(i, i + word.length) === word) table[i + word.length] += table[i] }) } return table[target.length]}console.log(countSum('', ['cat']))console.log(countSum('CatVsDog', ['Cat', 'Vs', 'Dog']))console.log(countSum('CatVsDog', ['at', 'Vs', 'Dog']))console.log(countSum('CatVsDog', ['Cat', 's', 'Do']))console.log(countSum('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))console.log(countSum('CatVsDog', ['Cat', 'V', 's', 'Vs', 'Dog']))
allConstruct
const allConstruct = (target, wordBank) => { const table = Array(target.length + 1) .fill() .map(() => []) table[0] = [[]] for (let i = 0; i < target.length; i++) { wordBank.forEach(word => { if (target.slice(i, i + word.length) === word) { // 对于以后格子的每个状况都须要进行后续单词的查看 const newCombinations = table[i].map(subArr => [...subArr, word]) // 减少而不是笼罩 table[i + word.length].push(...newCombinations) } }) } return table[target.length]}console.log(allConstruct('', ['cat']))console.log(allConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))console.log(allConstruct('CatVsDog', ['at', 'Vs', 'Dog']))console.log(allConstruct('CatVsDog', ['Cat', 's', 'Do']))console.log(allConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))console.log(allConstruct('CatVsDog', ['Cat', 'V', 's', 'Vs', 'Dog']))
总结
遇见dp问题:
- 留神到重叠的子问题
- 决定什么是最小的输出
- 想一下记忆化递归
- 想一下列表化问题
- 画一个策略, 树或者数组
Keep curious, keep learning
【Jeff 在写代码】无关代码的所有的所有