【 NO.1 至多在两个数组中呈现的值】

解题思路
签到题。

代码展现

class Solution {
public List<Integer> twoOutOfThree(int[] nums1, int[] nums2, int[] nums3) {

   int[] count1 = new int[200];   int[] count2 = new int[200];   int[] count3 = new int[200];   for (int n : nums1) {       count1[n] = 1;  }   for (int n : nums2) {       count2[n] = 1;  }   for (int n : nums3) {       count3[n] = 1;  }   List<Integer> result = new ArrayList<>();   for (int i = 0; i < 200; i++) {       if (count1[i] + count2[i] + count3[i] >= 2) {           result.add(i);      }  }   return result;

}
}
图片

【 NO.2 获取单值网格的最小操作数】

解题思路
网格能够转换成一维数组,而后排序。

不返回 -1 的条件就是:任意两个元素的差都是 x 的整倍数,咱们只须要查看相邻元素即可。

而后枚举最终的惟一值,能够利用前缀、后缀和疾速计算出把所有数字变成该值的操作次数。

代码展现

class Solution {
public int minOperations(int[][] grid, int x) {

   int[] arr = new int[grid.length * grid[0].length];   for (int i = 0; i < grid.length; i++) {       for (int j = 0; j < grid[0].length; j++) {           arr[i * grid[0].length + j] = grid[i][j];      }  }   Arrays.sort(arr);   for (int i = 1; i < arr.length; i++) {       if ((arr[i] - arr[i - 1]) % x != 0) {           return -1;      }  }   int suffixSum = Arrays.stream(arr).sum();   int prefixSum = 0;   int result = suffixSum / x;   for (int i = 0; i < arr.length; i++) {       suffixSum -= arr[i];       result = Math.min(result, calc(prefixSum, suffixSum, i, arr.length - i - 1, arr[i], x));       prefixSum += arr[i];  }   return result;

}

private int calc(int prefixSum, int suffixSum, int prefixNum, int suffixNum, int target, int step) {

   return (prefixNum * target - prefixSum) / step + (suffixSum - suffixNum * target) / step;

}
}
图片

【 NO.3 股票价格稳定】

解题思路
应用两个 TreeMap 即可,一个贮存工夫戳到价格的映射,一个贮存价格呈现了多少次。

代码展现

class StockPrice {

TreeMap<Integer, Integer> timestampToPrice;
TreeMap<Integer, Integer> priceCount;

public StockPrice() {

   timestampToPrice = new TreeMap<>();   priceCount = new TreeMap<>();

}

public void update(int timestamp, int price) {

   if (timestampToPrice.containsKey(timestamp)) {       int oldPrice = timestampToPrice.get(timestamp);       int count = priceCount.get(oldPrice);       if (count == 1) {           priceCount.remove(oldPrice);      } else {           priceCount.put(oldPrice, count - 1);      }  }   timestampToPrice.put(timestamp, price);   priceCount.put(price, priceCount.getOrDefault(price, 0) + 1);

}

public int current() {

   return timestampToPrice.lastEntry().getValue();

}

public int maximum() {

   return priceCount.lastKey();

}

public int minimum() {

   return priceCount.firstKey();

}
}
图片

【 NO.4 将数组分成两个数组并最小化数组和的差】

解题思路

枚举 + 双指针,具体思路见代码正文。

代码展现

class Solution {
public int minimumDifference(int[] nums) {

   int half = nums.length / 2;   int[] half1 = Arrays.copyOf(nums, half);   int[] half2 = new int[nums.length - half];   System.arraycopy(nums, half, half2, 0, half2.length);   // sums1[i] 示意从 half1 中选出 i 个数字失去的和的所有状况,并且从小到大排序   List<List<Integer>> sums1 = getSums(half1);   List<List<Integer>> sums2 = getSums(half2);   int sum = Arrays.stream(nums).sum();   int result = 0x3f3f3f3f;   // 枚举从 half1 中选出 select 个,则须要从 half2 中选出 half - select 个   for (int select = 0; select <= half; select++) {       List<Integer> half1Sums = sums1.get(select);       List<Integer> half2Sums = sums2.get(half - select);       // 从 half1Sums 和 half2Sums 中各选出一个数字,使得它们的和最靠近 sum / 2       int i = 0, j = half2Sums.size() - 1;       result = Math.min(result, Math.abs(sum - (half1Sums.get(i) + half2Sums.get(j)) * 2));       for (; i < half1Sums.size(); i++) {           while (j > 0 && Math.abs(sum - (half1Sums.get(i) + half2Sums.get(j - 1)) * 2) <= Math.abs(sum - (half1Sums.get(i) + half2Sums.get(j)) * 2)) {               j--;          }           result = Math.min(result, Math.abs(sum - (half1Sums.get(i) + half2Sums.get(j)) * 2));      }  }   return result;

}

// getSums 求出 nums 的所有子集的和
// 返回 List<List<Integer>> sums
// 其中 sums[i] 示意 nums 的所有大小为 i 的子集的和
// 去重并排序
private List<List<Integer>> getSums(int[] nums) {

   int n = nums.length;   List<Set<Integer>> set = new ArrayList<>();   List<List<Integer>> sums = new ArrayList<>();   for (int i = 0; i <= n; i++) {       sums.add(new ArrayList<>());       set.add(new HashSet<>());  }   for (int i = 0; i < (1 << n); i++) {       int sum = 0;       int num = 0;       for (int j = 0; j < n; j++) {           if ((i & (1 << j)) != 0) {               sum += nums[j];               num++;          }      }       if (!set.get(num).contains(sum)) {           set.get(num).add(sum);           sums.get(num).add(sum);      }  }   for (int i = 0; i < n; i++) {       Collections.sort(sums.get(i));  }   return sums;

}
}