上一篇《用Python绘制业余的K线图》,解说了数据获取、K线图绘制及成交量绘制等内容。本篇将在上一篇的根底上,持续解说挪动均线的绘制。

1、获取数据

咱们从恒无数金融数据社区,获取股票市场历史行情数据。咱们获取2021年3月1号至2021年6月1号,恒生电子(600570.SH)的日行情数据,并做简略解决,代码及执行后果如下。

# 加载取数与绘图所需的函数包import pandas as pdimport datetimefrom hs_udata import set_token,stock_quote_dailyfrom mpl_finance import candlestick_ohlcimport matplotlib as mplimport matplotlib.pyplot as pltimport matplotlib.dates as mdatesmpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体mpl.rcParams['axes.unicode_minus'] = False  # 解决保留图像是负号'-'显示为方块的问题def GetData(stock_code,start,end):    #stock_code:获取股票数据的股票代码    #      start:开始日期    #        end:完结日期    date_start=datetime.datetime.strptime(start,'%Y-%m-%d')    date_end  =datetime.datetime.strptime(end,'%Y-%m-%d')    data = pd.DataFrame([])    while date_start<date_end:        # 获取日行情数据,接口阐明见 https://udata.hs.net/datas/332/        # adjust_way枚举值为:0-不复权,1-前复权,2-后复权,此处取前复权        data_i = stock_quote_daily(en_prod_code=stock_code                                   ,trading_date=date_start.strftime('%Y%m%d')                                   ,adjust_way = 1)        data=pd.concat([data,data_i],axis=0)      # 将行情数据按行拼接        date_start+=datetime.timedelta(days=1)    # 日期变量自增    # 返回行情数据    return data#1、获取行情数据stock_code = "600570.SH"                        # 恒生电子 股票代码是600570.SHstart='2021-03-01'end  ='2021-06-01'set_token(token = 'xxxxxxxxxxxxxxxxxxxxxxxx')   # 注册恒无数之后,获取并替换tokendata = GetData(stock_code,start,end)#2、数据处理data = data.loc[data.turnover_status=='交易']                            # 剔除非交易日data_price = data[['trading_date','open_price','high_price','low_price'                   ,'close_price','business_amount']]                    # 选取日期与高开低收价格data_price.set_index('trading_date', inplace=True)                      # 将日期作为索引data_price = data_price.astype(float)                                   # 将价格数据类型转为浮点数# 将日期格局转为 candlestick_ohlc 可辨认的数值data_price['Date'] = list(map(lambda x:mdates.date2num(datetime.datetime.strptime(x,'%Y-%m-%d'))                                ,data_price.index.tolist()))data_price

2、计算挪动均线

#3、计算均值data_price['MA5']=data_price['close_price'].rolling(window=5).mean()data_price['MA10']=data_price['close_price'].rolling(window=10).mean()data_price['MA20']=data_price['close_price'].rolling(window=20).mean()data_price

3、绘制K线及挪动均线

将绘制挪动均线的代码,增加至K线图绘制代码中;源代码及绘制图片如下:

#4、绘制图片fig = plt.figure(figsize=(12,10))grid = plt.GridSpec(12, 10, wspace=0.5, hspace=0.5)#(1)绘制K线图# K线数据ohlc = data_price[['Date','open_price','high_price','low_price','close_price']]ohlc.loc[:,'Date'] = range(len(ohlc))     # 从新赋值横轴数据,绘制K线图无距离# 绘制K线ax1 = fig.add_subplot(grid[0:8,0:12])   # 设置K线图的尺寸candlestick_ohlc(ax1, ohlc.values.tolist(), width=.7                 , colorup='red', colordown='green')# (2)绘制均线ax1.plot(range(len(data_price)), data_price['MA5']         , color='red', lw=2, label='MA (5)')ax1.plot(range(len(data_price)), data_price['MA10']         , color='blue', lw=2, label='MA (10)')ax1.plot(range(len(data_price)), data_price['MA20']         , color='green', lw=2, label='MA (20)')# 设置标注plt.title(stock_code,fontsize = 14)       # 设置图片题目plt.ylabel('价 格(元)',fontsize = 14)   # 设置纵轴题目plt.legend(loc='best')                    # 绘制图例ax1.set_xticks([])                        # 日期标注在成交量中,故清空此处x轴刻度ax1.set_xticklabels([])                   # 日期标注在成交量中,故清空此处x轴 #(3)绘制成交量# 成交量数据data_volume = data_price[['Date','close_price','open_price','business_amount']]data_volume['color'] = data_volume.apply(lambda row: 1 if row['close_price'] >= row['open_price'] else 0, axis=1)        # 计算成交量柱状图对应的色彩,使之与K线色彩统一data_volume.Date = ohlc.Date# 绘制成交量ax2 = fig.add_subplot(grid[8:10,0:12])  # 设置成交量图形尺寸ax2.bar(data_volume.query('color==1')['Date']        , data_volume.query('color==1')['business_amount']        , color='r')                    # 绘制红色柱状图ax2.bar(data_volume.query('color==0')['Date']        , data_volume.query('color==0')['business_amount']        , color='g')                    # 绘制绿色柱状图plt.xticks(rotation=30) plt.xlabel('日 期',fontsize = 14)                               # 设置横轴题目# 批改横轴日期标注date_list = ohlc.index.tolist()           # 获取日期列表xticks_len = round(len(date_list)/(len(ax2.get_xticks())-1))      # 获取默认横轴标注的距离xticks_num = range(0,len(date_list),xticks_len)                   # 生成横轴标注地位列表xticks_str = list(map(lambda x:date_list[int(x)],xticks_num))     # 生成正在标注日期列表ax2.set_xticks(xticks_num)                                        # 设置横轴标注地位ax2.set_xticklabels(xticks_str)                                   # 设置横轴标注日期plt.show()