在理论生产环境中,将计算和存储进行拆散,是咱们进步集群吞吐量、确保集群规模程度可扩大的次要办法之一,并且通过集群的扩容、性能的优化,确保在数据大幅增长时,存储不能称为零碎的瓶颈。大数据培训

具体到咱们理论的我的项目需要中,有一个典型的场景,通常会将Hive中的局部数据,比方热数据,存入到HBase中,进行冷热拆散解决。

咱们采纳Spark读取Hive表数据存入HBase中,这里次要有两种形式:

通过HBase的put API进行数据的批量写入

通过生成HFile文件,而后通过BulkLoad形式将数据存入HBase

HBase的原生put形式,通过HBase集群的region server向HBase插入数据,然而当数据量十分大时,region会进行split、compact等解决,并且这些解决十分占用计算资源和IO开销,影响性能和集群的稳定性。

HBase的数据最终是以HFile的模式存储到HDFS上的,如果咱们能间接将数据生成为HFile文件,而后将HFile文件保留到HBase对应的表中,能够防止上述的很多问题,效率会绝对更高。

本篇文章次要介绍如何应用Spark生成HFile文件,而后通过BulkLoad形式将数据导入到HBase中,并附批量put数据到HBase以及间接存入数据到HBase中的理论利用示例。

1. 生成HFile,BulkLoad导入

1.1 数据样例

{"id":"1","name":"jack","age":"18"}
{"id":"2","name":"mike","age":"19"}
{"id":"3","name":"kilos","age":"20"}
{"id":"4","name":"tom","age":"21"}
...

1.2 示例代码

/**

  • @Author bigdatalearnshare
    */

object App {

def main(args: Array[String]): Unit = {

System.setProperty("HADOOP_USER_NAME", "root")val sparkSession = SparkSession  .builder()  .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")  .master("local[*]")  .getOrCreate()val rowKeyField = "id"val df = sparkSession.read.format("json").load("/people.json")val fields = df.columns.filterNot(_ == "id").sortedval data = df.rdd.map { row =>  val rowKey = Bytes.toBytes(row.getAs(rowKeyField).toString)  val kvs = fields.map { field =>    new KeyValue(rowKey, Bytes.toBytes("hfile-fy"), Bytes.toBytes(field), Bytes.toBytes(row.getAs(field).toString))  }  (new ImmutableBytesWritable(rowKey), kvs)}.flatMapValues(x => x).sortByKey()val hbaseConf = HBaseConfiguration.create(sparkSession.sessionState.newHadoopConf())hbaseConf.set("hbase.zookeeper.quorum", "linux-1:2181,linux-2:2181,linux-3:2181")hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, "hfile")val connection = ConnectionFactory.createConnection(hbaseConf)val tableName = TableName.valueOf("hfile")//没有HBase表则创立creteHTable(tableName, connection)val table = connection.getTable(tableName)try {  val regionLocator = connection.getRegionLocator(tableName)  val job = Job.getInstance(hbaseConf)  job.setMapOutputKeyClass(classOf[ImmutableBytesWritable])  job.setMapOutputValueClass(classOf[KeyValue])  HFileOutputFormat2.configureIncrementalLoad(job, table, regionLocator)  val savePath = "hdfs://linux-1:9000/hfile_save"  delHdfsPath(savePath, sparkSession)  job.getConfiguration.set("mapred.output.dir", savePath)  data.saveAsNewAPIHadoopDataset(job.getConfiguration)  val bulkLoader = new LoadIncrementalHFiles(hbaseConf)  bulkLoader.doBulkLoad(new Path(savePath), connection.getAdmin, table, regionLocator)} finally {  //WARN LoadIncrementalHFiles: Skipping non-directory hdfs://linux-1:9000/hfile_save/_SUCCESS 不影响,间接把文件移到HBASE对应HDFS地址了  table.close()  connection.close()}sparkSession.stop()

}

def creteHTable(tableName: TableName, connection: Connection): Unit = {

val admin = connection.getAdminif (!admin.tableExists(tableName)) {  val tableDescriptor = new HTableDescriptor(tableName)  tableDescriptor.addFamily(new HColumnDescriptor(Bytes.toBytes("hfile-fy")))  admin.createTable(tableDescriptor)}

}

def delHdfsPath(path: String, sparkSession: SparkSession) {

val hdfs = FileSystem.get(sparkSession.sessionState.newHadoopConf())val hdfsPath = new Path(path)if (hdfs.exists(hdfsPath)) {  //val filePermission = new FsPermission(FsAction.ALL, FsAction.ALL, FsAction.READ)  hdfs.delete(hdfsPath, true)}

}
}

1.3 注意事项

上述示例代码能够依据理论业务需要作相应调整,但有一个问题须要特地留神:

通过Spark读取过去的数据生成HFile时,要确保HBase的主键、列族、列依照有序排列。否则,会抛出以下异样:

Caused by: java.io.IOException: Added a key not lexically larger than previous. Current cell = 1/hfile-fy:age/1588230543677/Put/vlen=2/seqid=0, lastCell = 1/hfile-fy:name/1588230543677/Put/vlen=4/seqid=0

2. 批量put

2.1数据样例

val rowKeyField = "id"
val df = sparkSession.read.format("json").load("/stats.json")
val fields = df.columns.filterNot(_ == "id")

df.rdd.foreachPartition { partition =>

  val hbaseConf = HBaseConfiguration.create()  hbaseConf.set("hbase.zookeeper.quorum", "linux-1:2181,linux-2:2181,linux-3:2181")  hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, "batch_put")  val conn = ConnectionFactory.createConnection(hbaseConf)  val table = conn.getTable(TableName.valueOf("batch_put"))  val res = partition.map { row =>    val rowKey = Bytes.toBytes(row.getAs(rowKeyField).toString)    val put = new Put(rowKey)    val family = Bytes.toBytes("hfile-fy")    fields.foreach { field =>      put.addColumn(family, Bytes.toBytes(field), Bytes.toBytes(row.getAs(field).toString))    }    put  }.toList  Try(table.put(res)).getOrElse(table.close())  table.close()  conn.close()

}

在理论利用中,咱们也能够将常常一起查问的数据拼接在一起存入一个列中,比方将上述的pv和uv拼接在一起应用,能够升高KeyValue带来的结构化开销。

3.saveAsNewAPIHadoopDataset

val hbaseConf = sparkSession.sessionState.newHadoopConf()
hbaseConf.set("hbase.zookeeper.quorum", "linux-1:2181,linux-2:2181,linux-3:2181")

hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, "direct")
val job = Job.getInstance(hbaseConf)
job.setMapOutputKeyClass(classOf[ImmutableBytesWritable])
job.setMapOutputValueClass(classOf[Result])
job.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]])

val rowKeyField = "id"

val df = sparkSession.read.format("json").load("/stats.json")

val fields = df.columns.filterNot(_ == "id")

df.rdd.map { row =>

val put = new Put(Bytes.toBytes(row.getAs(rowKeyField).toString))val family = Bytes.toBytes("hfile-fy")fields.foreach { field =>  put.addColumn(family, Bytes.toBytes(field), Bytes.toBytes(row.getAs(field).toString))}(new ImmutableBytesWritable(), put)

}.saveAsNewAPIHadoopDataset(job.getConfiguration)

以上次要介绍了3种利用Spark将数据导入HBase的形式。其中,通过生成HFile文件,而后以BulkLoad导入的形式更适宜于大数据量的操作。

此外,如果咱们在应用Spark(或者其余计算引擎)读取HBase表数据时,如果效率绝对低,比方:Spark读取HBase时会依据region的数量生成对应数量的task,导致雷同数据量下,会比间接读取Hive数据慢,也能够通过间接读取HFile的形式来解决。当然,理论利用还要联合具体的场景,波及的技术等。