client通过GET /query查问influxdb集群中的指标数据:
curl -G 'http://ops1:8086/query?pretty=true' --data-urlencode "db=falcon" --data-urlencode "q=SELECT * FROM \"cpu.user\" order by time desc limit 10"
influxdb集群中的数据分shard在不同的节点上存储,client查问的指标数据,可能不在以后节点上,也可能以后节点和其它节点上都有,所以在查问时,即须要查问以后节点,也须要查问近程节点,而后将数据合并后返回client。
整体流程:
- node1在8086上接管/query申请,而后依据查问条件,确定指标数据在哪些节点上(node1&node2);
- 依据查问条件,本机查问指标数据,失去localData;
- 向远端节点node2发送查问申请,失去remoteData;
- 将localData和remoteData合并返回client;
HTTP handler
http handler入口:
// services/httpd/handler.gofunc (h *Handler) serveQuery(w http.ResponseWriter, r *http.Request, user meta.User) { ...... // Execute query. results := h.QueryExecutor.ExecuteQuery(q, opts, closing) ......}
执行查问,可能有多个查问语句:
// query/executor.gofunc (e *Executor) ExecuteQuery(query *influxql.Query, opt ExecutionOptions, closing chan struct{}) <-chan *Result { results := make(chan *Result) go e.executeQuery(query, opt, closing, results) return results}func (e *Executor) executeQuery(query *influxql.Query, opt ExecutionOptions, closing <-chan struct{}, results chan *Result) { ...... for ; i < len(query.Statements); i++ { ..... err = e.StatementExecutor.ExecuteStatement(stmt, ctx) ..... } .....}
本地和远端查问
对于每个statement,其查问过程:
- 基于statement,创立iterator(含本地节点和远端节点);
- 基于iterator,创立emitter,迭代emitter.Emit()拿到后果;
// cluster/statement_executor.gofunc (e *StatementExecutor) executeSelectStatement(stmt *influxql.SelectStatement, ctx *query.ExecutionContext) error { cur, err := e.createIterators(ctx, stmt, ctx.ExecutionOptions) .... em := query.NewEmitter(cur, ctx.ChunkSize) defer em.Close() for { row, partial, err := em.Emit() result := &query.Result{ Series: []*models.Row{row}, Partial: partial, } ....... err := ctx.Send(result) }}
重点看一下iterator的创立过程:
// cluster/statement_executor.gofunc (e *StatementExecutor) createIterators(ctx context.Context, stmt *influxql.SelectStatement, opt query.ExecutionOptions) (query.Cursor, error) { sopt := query.SelectOptions{ NodeID: opt.NodeID, MaxSeriesN: e.MaxSelectSeriesN, MaxPointN: e.MaxSelectPointN, MaxBucketsN: e.MaxSelectBucketsN, Authorizer: opt.Authorizer, } // Create a set of iterators from a selection. cur, err := query.Select(ctx, stmt, e.ShardMapper, sopt) if err != nil { return nil, err } return cur, nil}
持续走:
// query/select.gofunc Select(ctx context.Context, stmt *influxql.SelectStatement, shardMapper ShardMapper, opt SelectOptions) (Cursor, error) { s, err := Prepare(stmt, shardMapper, opt) if err != nil { return nil, err } // Must be deferred so it runs after Select. defer s.Close() return s.Select(ctx)}func (p *preparedStatement) Select(ctx context.Context) (Cursor, error) { ..... cur, err := buildCursor(ctx, p.stmt, p.ic, opt) ....}
持续走:
// query/select.gofunc buildAuxIterator(ctx context.Context, ic IteratorCreator, sources influxql.Sources, opt IteratorOptions) (Iterator, error) { ...... if err := func() error { for _, source := range sources { switch source := source.(type) { case *influxql.Measurement: input, err := ic.CreateIterator(ctx, source, opt) //这里是要害 if err != nil { return err } inputs = append(inputs, input) }(), err != nil { }}
调用链条比拟深,到这里比拟容易理解了:
- 先创立LocalShard的iterator;
- 再创立remoteShard的iterator;
- 最初将iterator合并返回;
func (c *ClusterShardMapping) CreateIterator(ctx context.Context, m *influxql.Measurement, opt query.IteratorOptions) (query.Iterator, error) { ics := []query.Iterator{} localIterator, err := c.LocalShardMapping.CreateIterator(ctx, m, opt) ics = append(ics, localIterator) .... for _, sg := range c.RemoteShardGroup[source] { ri, err := sg.CreateIterator(ctx, m, opt) ..... ics = append(ics, ri) } return query.Iterators(ics).Merge(opt)}