原文链接:http://tecdat.cn/?p=23855

进行荟萃剖析时,您很可能必须应用通用度量将成果大小计算或转换为成果大小。有多种工具能够执行此操作 。

计算成果大小

R语言涵盖了大多数成果尺寸计算和转换选项,能够让您更好地理解。例如,从t测验中获取成果大小:

esc_t(t, p, totaln, grp1n, grp2n,      es.type = c("d", "g", "or", "logit", "r", "cox.or", "cox.log"),      study = NULL, ...)

而后,您能够依据可用参数来计算成果大小,如下所示:

# 不相等的样本量esc_t(t = 3.3, grp1n = 100, grp2n = 150)# 样本大小相等esc_t(t = 3.3, totaln = 200)

转换成果大小

软件提供了多种性能,可将一种效应量转换为另一种效应量大小:(   标准差  均匀对数比),(标准差均匀对数比),  (标准差均匀对数r),  (奇数比)到标准差的平均值),  (将相关系数r转换为Fisher的z)和  (将Fisher的z转换为相关系数的r)。

工作流程

成果大小计算函数的后果以列表模式返回  。

e1 <- esc(grp1yes = 30, grp1no = 50, grp2yes = 40,              grp2no = 45, study = "Study 1")e4 <-mean_sd(grp1m = 7, grp1sd = 2, grp1n = 50, grp2m = 9, grp2sd = 3,                  grp2n = 60, es.type = "logit", study = "Study 4")

当初,_mydat_  蕴含一个数据帧,  _其中_蕴含几种成果大小计算的后果:

> mydat

而后按如下形式计算荟萃剖析(请留神,不同的效应量度量仅用于演示目标–通常,您应该只有一个独特的效应量能力进入荟萃剖析):

rm(yi = es, sei = se, method = "REML", data = mydat)

最受欢迎的见解

1.Python中的Apriori关联算法-市场购物篮剖析

2.R语言绘制生存曲线预计|生存剖析|如何R作生存曲线图

3.用关联规定数据挖掘摸索药物配伍中的法则

4.通过Python中的Apriori算法进行关联规定开掘

5.用关联规定数据挖掘摸索药物配伍中的法则

6.采纳SPSS Modeler的Web简单网络对所有腧穴进行剖析

7.R语言如何在生存剖析与COX回归中计算IDI,NRI指标

8.R语言如何找到患者数据中具备差别的指标?(PLS—DA剖析)

9.R语言中的生存剖析Survival analysis早期肺癌患者4例