1.下载facenet模型

facenet须要通过大量的运算,所以间接应用他人训练过的权重
链接:https://pan.baidu.com/s/1CGyz...
提取码:pew0

2. 应用的工具

1.    facenet 预训练模型,用于获取人脸特色2.    mtcnn 用于人脸检测并返回对应参数

3. 代码实现

1. 加载模型

from keras.models import load_modelfrom mtcnn import MTCNN# 加载mtcnndector = MTCNN()# 加载facenet模型model = load_model('facenet_keras.h5')

2.依据图片检测人脸

def extract_face(detector, file_name, required_size=(160, 160)):    # detector:mtcnn 对象,file_name:图片门路    # 加载图片    image = Image.open(file_name)    # 将图片转换黑白    image = image.convert('RGB')    # 将图片转换为 array    pixels = asarray(image)    # 应用 mtcnn 检测人脸    results = detector.detect_faces(pixels)    # 返回人脸地位信息    x1, y1, width, height = results[0]['box']    x1, y1 = abs(x1), abs(y1)    x2, y2 = x1 + width, y1 + height    # 从图片剪裁人脸    face = pixels[y1:y2, x1:x2]    # 将剪裁的人脸矩阵化    image = Image.fromarray(face)    # 调整检测人脸图片大小    image = image.resize(required_size)    # 调整矩阵形态    face_array = asarray(image).reshape(1, 160, 160, 3)    return face_array

3.应用facenet 提取人脸特色

def pre_process(x):    if x.ndim == 4:        axis = (1, 2, 3)        size = x[0].size    elif x.ndim == 3:        axis = (0, 1, 2)        size = x.size    else:        raise ValueError('Dimension should be 3 or 4')    mean = np.mean(x, axis=axis, keepdims=True)    std = np.std(x, axis=axis, keepdims=True)    std_adj = np.maximum(std, 1.0 / np.sqrt(size))    y = (x - mean) / std_adj    return ydef get_embedding(model, img):    face_img = pre_process(img)    pre = model.predict(face_img)    pre = l2_normalize(np.concatenate(pre))    pre = np.reshape(pre, [128])    return pre

4.人脸特色比照

当从输出的两张图片中获取到人脸特色后,须要将两张图片的特色进行比照,具体能够参考吴恩达老师的深度学习视频

def face_distance(face_encodings, face_to_compare):    if len(face_encodings) == 0:        return np.empty((0))    return np.linalg.norm(face_encodings - face_to_compare, axis=1)

4.残缺代码

import osfrom keras.models import load_modelfrom numpy import expand_dimsimport numpy as npfrom face_detector import extract_facefrom datetime import datetimefrom mtcnn import MTCNNimport utilsfrom PIL import Imagefrom numpy import asarraydef pre_process(x):    if x.ndim == 4:        axis = (1, 2, 3)        size = x[0].size    elif x.ndim == 3:        axis = (0, 1, 2)        size = x.size    else:        raise ValueError('Dimension  3 or 4')    mean = np.mean(x, axis=axis, keepdims=True)    std = np.std(x, axis=axis, keepdims=True)    std_adj = np.maximum(std, 1.0 / np.sqrt(size))    y = (x - mean) / std_adj    return ydef l2_normalize(x, axis=-1, epsilon=1e-10):    output = x / np.sqrt(np.maximum(np.sum(np.square(x), axis=axis, keepdims=True), epsilon))    return outputdef get_embedding(model, img):    face_img = pre_process(img)    pre = model.predict(face_img)    pre = l2_normalize(np.concatenate(pre))    pre = np.reshape(pre, [128])    return predef extract_face(detector, file_name, required_size=(160, 160)):    # 加载图片    image = Image.open(file_name)    # 将图片转换黑白    image = image.convert('RGB')    # 将图片转换为 array    pixels = asarray(image)    # 应用 mtcnn 检测人脸    results = detector.detect_faces(pixels)    # 返回人脸地位信息    x1, y1, width, height = results[0]['box']    x1, y1 = abs(x1), abs(y1)    x2, y2 = x1 + width, y1 + height    # 从图片剪裁人脸    face = pixels[y1:y2, x1:x2]    # 将剪裁的人脸矩阵化    image = Image.fromarray(face)    # 调整检测人脸图片大小    image = image.resize(required_size)    # 调整矩阵形态    face_array = asarray(image).reshape(1, 160, 160, 3)    return face_arraydef face_distance(face_encodings, face_to_compare):    if len(face_encodings) == 0:        return np.empty((0))    return np.linalg.norm(face_encodings - face_to_compare, axis=1)def verify_demo():    model = load_model('facenet_keras.h5')    dector = MTCNN()        org_list = []    # 图片门路,批改成本人的图片门路    image1_path = 'images\camera_0.jpg'    pixels = extract_face(dector, image1_path)    embedding1 = get_embedding(model, pixels)    org_list.append(embedding1)    # 图片门路,批改成本人的图片门路    image2_path = 'vertify\younes.jpg'    pixels1 = extract_face(dector, image2_path)    embedding2 = get_embedding(model, pixels1)    dist = face_distance(org_list, embedding2)    print(dist)    if dist < 0.6:        print("欢送 " + str('ounes') + "回家!")    else:        print("教训证,您与" + str('ounes') + "不符!")if __name__ == '__main__':    verify_demo()    # check_who_is()

参考:
吴恩达课后编程作业】Course 4 -卷积神经网络 - 第周围作业
如何在 Keras 中应用 FaceNet 开发人脸识别零碎