本文环境阐明
centos服务器jupyter的scala核spylon-kernelspark-2.4.0scala-2.11.12hadoop-2.6.0
本文次要内容
- spark读取hive表的数据,次要包含间接sql读取hive表;通过hdfs文件读取hive表,以及hive分区表的读取。
- 通过jupyter上的cell来初始化sparksession。
- 文末还有通过spark提取hdfs文件的残缺示例
jupyter配置文件
- 咱们能够在jupyter的cell框外面,对spark的session做出对应的初始化,具体能够见上面的示例。
%%init_sparklauncher.master = "local[*]"launcher.conf.spark.app.name = "BDP-xw"launcher.conf.spark.driver.cores = 2launcher.conf.spark.num_executors = 3launcher.conf.spark.executor.cores = 4launcher.conf.spark.driver.memory = '4g'launcher.conf.spark.executor.memory = '4g'
// launcher.conf.spark.serializer = "org.apache.spark.serializer.KryoSerializer"// launcher.conf.spark.kryoserializer.buffer.max = '4g'
import org.apache.spark.sql.SparkSessionvar NumExecutors = spark.conf.getOption("spark.num_executors").reprvar ExecutorMemory = spark.conf.getOption("spark.executor.memory").reprvar AppName = spark.conf.getOption("spark.app.name").reprvar max_buffer = spark.conf.getOption("spark.kryoserializer.buffer.max").repr
println(f"Config as follows: \nNumExecutors: $NumExecutors, \nAppName: $AppName,\nmax_buffer:$max_buffer")
- 间接查看咱们初始化的sparksession对应的环境各变量
从hive中取数
间接sparksql走起
import org.apache.spark.sql.SparkSessionval sql_1 = """select * from tbs limit 4 """var df = sql(sql_1)df.show(5, false)
通过hdfs取数
- 具体示例能够参考文末的从hdfs取数残缺脚本示例
object LoadingData_from_hdfs_base extends mylog{// with Logging ... def main(args: Array[String]=Array("tb1", "3", "\001", "cols", "")): Unit = { if (args.length < 2) { println("Usage: LoadingData_from_hdfs <tb_name, parts. sep_line, cols, paths>") System.err.println("Usage: LoadingData_from_hdfs <tb_name, parts, sep_line, cols, paths>") System.exit(1) } log.warn("开始啦调度") val tb_name = args(0) val parts = args(1) val sep_line = args(2) val select_col = args(3) val save_paths = args(4) val select_cols = select_col.split("#").toSeq log.warn(s"Loading cols are : \n $select_cols") val gb_sql = s"DESCRIBE FORMATTED ${tb_name}" val gb_desc = sql(gb_sql) val hdfs_address = gb_desc.filter($"col_name".contains("Location")).take(1)(0).getString(1) val hdfs_address_cha = s"$hdfs_address/*/" val Cs = new DataProcess_base(spark) val tb_desc = Cs.get_table_desc(tb_name) val raw_data = Cs.get_hdfs_data(hdfs_address) val len1 = raw_data.map(item => item.split(sep_line)).first.length val names = tb_desc.filter(!$"col_name".contains("#")).dropDuplicates(Seq("col_name")).sort("id").select("col_name").take(len1).map(_(0)).toSeq.map(_.toString) val schema1 = StructType(names.map(fieldName => StructField(fieldName, StringType))) val rawRDD = raw_data.map(_.split(sep_line).map(_.toString)).map(p => Row(p: _*)).filter(_.length == len1) val df_data = spark.createDataFrame(rawRDD, schema1)//.filter("custommsgtype = '1'") val df_desc = select_cols.toDF.join(tb_desc, $"value"===$"col_name", "left") val df_gb_result = df_data.select(select_cols.map(df_data.col(_)): _*)//.limit(100) df_gb_result.show(5, false) ...// spark.stop() }}
val cols = "area_name#city_name#province_name"val tb_name = "tb1"val sep_line = "\u0001"// 执行脚本LoadingData_from_hdfs_base.main(Array(tb_name, "4", sep_line, cols, ""))
)
判断门路是否为文件夹
- 形式1
def pathIsExist(spark: SparkSession, path: String): Boolean = { val filePath = new org.apache.hadoop.fs.Path( path ) val fileSystem = filePath.getFileSystem( spark.sparkContext.hadoopConfiguration ) fileSystem.exists( filePath )}pathIsExist(spark, hdfs_address)// 失去后果如下:// pathIsExist: (spark: org.apache.spark.sql.SparkSession, path: String)Boolean// res4: Boolean = true
- 形式2
import java.io.Fileval d = new File("/usr/local/xw")d.isDirectory// 失去后果如下:// d: java.io.File = /usr/local/xw// res3: Boolean = true
分区表读取源数据
对分区文件须要留神下,须要保障原始的hdfs上的raw文件外面是否有对应的分区字段值
- 如果分区字段在hdfs中的原始文件中,则能够间接通过通过hdfs取数
- 若原始文件中,不包含分区字段信息,则须要依照以下形式取数啦
- 具体示例能够参考文末的从hdfs取数残缺脚本示例
单个文件读取
object LoadingData_from_hdfs_onefile_with_path extends mylog{ def main(args: Array[String]=Array("tb_name", "hdfs:/", "3","\n", "\001", "cols", "")): Unit = { ... val hdfs_address = args(1) val len1 = raw_data.map(item => item.split(sep_line)).first.length val rawRDD = raw_data.flatMap(line => line.split(sep_text)).map(word => (word.split(sep_line):+hdfs_address)).map(p => Row(p: _*)) println(rawRDD.take(2)) val names = tb_desc.filter(!$"col_name".contains("#")).dropDuplicates(Seq("col_name")).sort("id").select("col_name").take(len1).map(_(0)).toSeq.map(_.toString) import org.apache.spark.sql.types.StructType val schema1 = StructType(names.map(fieldName => StructField(fieldName, StringType))) val new_schema1 = schema1.add(StructField("path", StringType)) val df_data = spark.createDataFrame(rawRDD, new_schema1) val df_desc = select_cols.toDF.join(tb_desc, $"value"===$"col_name", "left") // df_desc.show(false) val df_gb_result = df_data.select(select_cols.map(df_data.col(_)): _*)//.limit(100) df_gb_result.show(5, false) ...// spark.stop() }}
val file1 = "hdfs:file1.csv"val tb_name = "tb_name"val sep_text = "\n"val sep_line = "\001"val cols = "city#province#etl_date#path"// 执行脚本LoadingData_from_hdfs_onefile_with_path.main(Array(tb_name, file1, "4", sep_line, sep_text, cols, ""))
多个文件读取尝试1
- 通过wholeTextFiles读取文件夹外面的文件时,保留文件名信息;
- 具体示例能够参考文末的从hdfs取数残缺脚本示例
object LoadingData_from_hdfs_wholetext_with_path extends mylog{// with Logging ... def main(args: Array[String]=Array("tb1", "hdfs:/", "3","\n", "\001", "cols", "")): Unit = { ... val tb_name = args(0) val hdfs_address = args(1) val parts = args(2) val sep_line = args(3) val sep_text = args(4) val select_col = args(5) val save_paths = args(6) val select_cols = select_col.split("#").toSeq val Cs = new DataProcess_get_data(spark) val tb_desc = Cs.get_table_desc(tb_name) val rddWhole = spark.sparkContext.wholeTextFiles(s"$hdfs_address", 10) rddWhole.foreach(f=>{ println(f._1+"数据量是=>"+f._2.split("\n").length) }) val files = rddWhole.collect val len1 = files.flatMap(item => item._2.split(sep_text)).take(1).flatMap(items=>items.split(sep_line)).length val names = tb_desc.filter(!$"col_name".contains("#")).dropDuplicates(Seq("col_name")).sort("id").select("col_name").take(len1).map(_(0)).toSeq.map(_.toString) import org.apache.spark.sql.types.StructType // 解析wholeTextFiles读取的后果并转化成dataframe val wordCount = files.map(f=>f._2.split(sep_text).map(g=>g.split(sep_line):+f._1.split("/").takeRight(1)(0))).flatMap(h=>h).map(p => Row(p: _*)) val schema1 = StructType(names.map(fieldName => StructField(fieldName, StringType))) val new_schema1 = schema1.add(StructField("path", StringType)) val rawRDD = sc.parallelize(wordCount) val df_data = spark.createDataFrame(rawRDD, new_schema1) val df_desc = select_cols.toDF.join(tb_desc, $"value"===$"col_name", "left") //df_desc.show(false) val df_gb_result = df_data.select(select_cols.map(df_data.col(_)): _*) df_gb_result.show(5, false) println("生成的dataframe,依path列groupby的后果如下") df_gb_result.groupBy("path").count().show(false) ...// spark.stop() }}
val file1 = "hdfs:file1_1[01].csv"val tb_name = "tb_name"val sep_text = "\n"val sep_line = "\001"val cols = "city#province#etl_date#path"// 执行脚本LoadingData_from_hdfs_wholetext_with_path.main(Array(tb_name, file1, "4", sep_line, sep_text, cols, ""))
读取多文件且保留文件名为列名技术实现
以下实现性能
- 将
Array[(String, String)]
类型的按(String, String)拆成多行; - 将(String, String)中的第2个元素,依照
\n
宰割符分成多行,按\?
分隔符分成多列; - 将(String, String)中的第1个元素,别离加到2中的每行前面。在dataframe中出现的就是新增一列啦
- 将
业务场景
- 如果要一次读取多个文件,且绝对合并后的数据集中,对数据来源于哪一个文件作出辨别。
<!-- #endregion -->
- 如果要一次读取多个文件,且绝对合并后的数据集中,对数据来源于哪一个文件作出辨别。
// 测试用例,次要是把wholetextfile失去的后果转化为DataFrameval test1 = Array(("abasdfsdf", "a?b?c?d\nc?d?d?e"), ("sdfasdf", "b?d?a?e\nc?d?e?f"))val test2 = test1.map(line=>line._2.split("\n").map(line1=>line1.split("\\?"):+line._1)).flatMap(line2=>line2).map(p => Row(p: _*))val cols = "cn1#cn2#cn3#cn4#path"val names = cols.split("#")val schema1 = StructType(names.map(fieldName => StructField(fieldName, StringType)))val rawRDD = sc.parallelize(test2)val df_data = spark.createDataFrame(rawRDD, schema1)df_data.show(4, false)test1
多个文件读取for循环
- 通过for循环遍历读取文件夹外面的文件时,保留文件名信息;
- 具体示例能够参考文末的从hdfs取数残缺脚本示例
import org.apache.spark.rdd.RDDimport org.apache.spark.sql.{DataFrame, Row}import org.apache.spark.sql.SparkSessionimport org.apache.spark.{SparkConf, SparkContext}import org.apache.spark.sql.functions.monotonically_increasing_idimport org.apache.log4j.{Level, Logger}import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType}import org.apache.hadoop.fs.{FileSystem, Path}Logger.getLogger("org").setLevel(Level.WARN)// val log = Logger.getLogger(this.getClass)@transient lazy val log:Logger = Logger.getLogger(this.getClass)class DataProcess_get_data_byfor (ss: SparkSession) extends java.io.Serializable{ import ss.implicits._ import ss.sql import org.apache.spark.sql.types.DataTypes ... def union_dataframe(df_1:RDD[String], df_2:RDD[String]):RDD[String] ={ val count1 = df_1.map(item=>item.split(sep_line)).take(1)(0).length val count2 = df_2.map(item=>item.split(sep_line)).take(1)(0).length val name2 = df_2.name.split("/").takeRight(1)(0) val arr2 = df_2.map(item=>item.split(sep_line):+name2).map(p => Row(p: _*)) println(s"运行到这儿了") var name1 = "" var arr1 = ss.sparkContext.makeRDD(List().map(p => Row(p: _*)))// var arr1 = Array[org.apache.spark.sql.Row] if (count1 == count2){ name1 = df_1.name.split("/").takeRight(1)(0) arr1 = df_1.map(item=>item.split(sep_line):+name1).map(p => Row(p: _*)) // arr1.foreach(f=>print(s"arr1嘞$f" + f.length + "\n")) println(s"运行到这儿了没?$count1~$count2 $name1/$name2") arr1 } else{ println(s"运行到这儿了不相等哈?$count1~$count2 $name1/$name2") arr1 = df_1.map(item=>item.split(sep_line)).map(p => Row(p: _*)) } var rawRDD = arr1.union(arr2) // arr3.foreach(f=>print(s"$f" + f.length + "\n")) // var rawRDD = sc.parallelize(arr3) var sourceRdd = rawRDD.map(_.mkString(sep_line))// var count31 = arr1.take(1)(0).length// var count32 = arr2.take(1)(0).length// var count3 = sourceRdd.map(item=>item.split(sep_line)).take(1)(0).length// var nums = sourceRdd.count// print(s"arr1: $count31、arr2: $count32、arr3: $count3, 数据量为:$nums") sourceRdd}}
object LoadingData_from_hdfs_text_with_path_byfor extends mylog{// with Logging ... def main(args: Array[String]=Array("tb1", "hdfs:/", "3","\n", "\001", "cols","data1", "test", "")): Unit = { ... val hdfs_address = args(1) ... val pattern = args(6) val pattern_no = args(7) val select_cols = select_col.split("#").toSeq log.warn(s"Loading cols are : \n $select_cols") val files = FileSystem.get(spark.sparkContext.hadoopConfiguration).listStatus(new Path(s"$hdfs_address")) val files_name = files.toList.map(f=> f.getPath.getName) val file_filter = files_name.filter(_.contains(pattern)).filterNot(_.contains(pattern_no)) val df_1 = file_filter.map(item=> sc.textFile(s"$path1$item")) df_1.foreach(f=>{ println(f + "数据量是" + f.count) }) val df2 = df_1.reduce(_ union _) println("合并后的数据量是" + df2.count) val Cs = new DataProcess_get_data_byfor(spark) ... // 将for循环读取的后果合并起来 val result = df_1.reduce((a, b)=>union_dataframe(a, b)) val result2 = result.map(item=>item.split(sep_line)).map(p => Row(p: _*)) val df_data = spark.createDataFrame(result2, new_schema1) val df_desc = select_cols.toDF.join(tb_desc, $"value"===$"col_name", "left") println("\n") //df_desc.show(false) val df_gb_result = df_data.select(select_cols.map(df_data.col(_)): _*) df_gb_result.show(5, false) println("生成的dataframe,依path列groupby的后果如下") df_gb_result.groupBy("path").count().show(false) ...// spark.stop() }}
val path1 = "hdfs:202001/"val tb_name = "tb_name"val sep_text = "\n"val sep_line = "\001"val cols = "city#province#etl_date#path"val pattern = "result_copy_1"val pattern_no = "1.csv"// val file_filter = List("file1_10.csv", "file_12.csv", "file_11.csv")
// 执行脚本LoadingData_from_hdfs_text_with_path_byfor.main(Array(tb_name, path1, "4", sep_line, sep_text, cols, pattern, pattern_no, ""))
执行脚本的残缺示例
import org.apache.spark.rdd.RDDimport org.apache.spark.sql.{DataFrame, Row}import org.apache.spark.sql.SparkSessionimport org.apache.spark.sql.functions.monotonically_increasing_idimport org.apache.log4j.{Level, Logger}import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType}Logger.getLogger("org").setLevel(Level.WARN)val log = Logger.getLogger(this.getClass)class DataProcess_base (ss: SparkSession) extends java.io.Serializable{ import ss.implicits._ import ss.sql import org.apache.spark.sql.types.DataTypes def get_table_desc(tb_name:String="tb"):DataFrame ={ val gb_sql = s"desc ${tb_name}" val gb_desc = sql(gb_sql) val names = gb_desc.filter(!$"col_name".contains("#")).withColumn("id", monotonically_increasing_id()) names } def get_hdfs_data(hdfs_address:String="hdfs:"):RDD[String]={ val gb_data = ss.sparkContext.textFile(hdfs_address) gb_data.cache() val counts1 = gb_data.count println(f"the rows of origin hdfs data is $counts1%-1d") gb_data }}
object LoadingData_from_hdfs_base extends mylog{// with Logging Logger.getLogger("org").setLevel(Level.WARN) val conf = new SparkConf() conf.setMaster("yarn") conf.setAppName("LoadingData_From_hdfs") conf.set("spark.home", System.getenv("SPARK_HOME")) val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate() import spark.implicits._ import spark.sql var UIAddress = spark.conf.getOption("spark.driver.appUIAddress").repr var yarnserver = spark.conf.getOption("spark.org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter.param.PROXY_URI_BASES").repr println(f"Config as follows: \nUIAddress: $UIAddress, \nyarnserver: $yarnserver") def main(args: Array[String]=Array("tb1", "3", "\001", "cols", "")): Unit = { if (args.length < 2) { println("Usage: LoadingData_from_hdfs <tb_name, parts. sep_line, cols, paths>") System.err.println("Usage: LoadingData_from_hdfs <tb_name, parts, sep_line, cols, paths>") System.exit(1) } log.warn("开始啦调度") val tb_name = args(0) val parts = args(1) val sep_line = args(2) val select_col = args(3) val save_paths = args(4) val select_cols = select_col.split("#").toSeq log.warn(s"Loading cols are : \n $select_cols") val gb_sql = s"DESCRIBE FORMATTED ${tb_name}" val gb_desc = sql(gb_sql) val hdfs_address = gb_desc.filter($"col_name".contains("Location")).take(1)(0).getString(1) println(s"tbname门路是$hdfs_address") val hdfs_address_cha = s"$hdfs_address/*/" val Cs = new DataProcess_base(spark) val tb_desc = Cs.get_table_desc(tb_name) val raw_data = Cs.get_hdfs_data(hdfs_address) val len1 = raw_data.map(item => item.split(sep_line)).first.length val names = tb_desc.filter(!$"col_name".contains("#")).dropDuplicates(Seq("col_name")).sort("id").select("col_name").take(len1).map(_(0)).toSeq.map(_.toString) val schema1 = StructType(names.map(fieldName => StructField(fieldName, StringType))) val rawRDD = raw_data.map(_.split(sep_line).map(_.toString)).map(p => Row(p: _*)).filter(_.length == len1) val df_data = spark.createDataFrame(rawRDD, schema1)//.filter("custommsgtype = '1'") val df_desc = select_cols.toDF.join(tb_desc, $"value"===$"col_name", "left") val df_gb_result = df_data.select(select_cols.map(df_data.col(_)): _*)//.limit(100) df_gb_result.show(5, false) println("生成的dataframe,依path列groupby的后果如下") // val part = parts.toInt // df_gb_result.repartition(part).write.mode("overwrite").option("header","true").option("sep","#").csv(save_paths) // log.warn(f"the rows of origin data compare to mysql results is $ncounts1%-1d VS $ncounts3%-4d") // spark.stop() }}
val cols = "area_name#city_name#province_name"val tb_name = "tb1"val sep_line = "\u0001"// 执行脚本LoadingData_from_hdfs_base.main(Array(tb_name, "4", sep_line, cols, ""))