原文链接: http://tecdat.cn/?p=23697
咱们应用R库mgcv,用狭义加性模型(GAMs)对环境数据进行建模。mgcv是一个平凡的库,具备丰盛的性能,但咱们常常发现,默认的诊断图并不令人振奋。特地是偏残差图,性能很强,但不丑陋,残差简直看不见。咱们须要依据这些代码来制作本人的偏回归平滑图。
1) 根本的数据设置
咱们正在应用这里探讨的数据集。咱们应用的是国家发病率和死亡率空气污染钻研(NMMAPS)的数据。咱们将数据限度在1997-2000年。
data\[date>as.Date("1996-12-31"),\]
2) 简略的GAM模型--温度对臭氧
在这个例子中,咱们放弃模型的简略性--应用高斯数据,繁多预测因子。咱们对温度与臭氧进行建模,咱们将输入默认的偏残差图。
# 模型 - 温度对臭氧的影响plot(gam)
这个图能够改良?
3) 从新制作偏残差图
偏残差图(_Partial Residual_ Plot)是多元回归中罕用的诊断工具,特地是评估模型中在一个或另一个解释变量中是否蕴含非线性项。在多元回归y=0+1x1+…+pxp+中,若欲反映其中变量Xj与因变量y之间的关系并用图形显示,其办法之一是用偏残差图。
在这里,咱们退出平滑项、置信区间和偏残差。
#咱们能够在多边形的顶部增加线条qplot(temp, fit, type="n")+poly(c(temp, rev(temp)), c(low95,rev(up95))# 对于置信度的灰色多边形
在最初一步,咱们要退出偏残差自身。偏残差是平滑项的估计值+整个模型的残差。
#增加偏残差。points(temp,partial.resids)
为便于参考,这里是残缺模型的摘要。
模型 - 温度对臭氧的影响
最受欢迎的见解
1.R语言多元Logistic逻辑回归 利用案例
2.面板平滑转移回归(PSTR)剖析案例实现
3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR)
4.R语言泊松Poisson回归模型剖析案例
5.R语言混合效应逻辑回归Logistic模型剖析肺癌
6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现
7.R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
8.python用线性回归预测股票价格
9.R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测