原文链接 http://tecdat.cn/?p=2623
原文出处:拓端数据部落公众号
和宏观经济数据不同,金融市场上多为高频数据,比方股票收益率序列。直观的来说 ,后者是比前者“稳定”更多且随机稳定的序列,在一元或多元的状况下,构建Copula函数模型和GARCH模型是最好的抉择。
多元GARCH家族中,品种十分多,须要本人多推导了解,抉择最优模型。本文应用R软件对3家上市公司近十年的每周收益率为例建设模型。
首先咱们能够绘制这三个工夫序列。
在这里应用多变量的ARMA-GARCH模型。
本文思考了两种模型
1 ARMA模型残差的多变量GARCH过程
2 ARMA-GARCH过程残差的多变量模型(基于Copula)
1 ARMA-GARCH模型
> fit1 = garchFit(formula = ~arma(2,1)+ garch(1,1),data = dat \[,1\],cond.dist =“std”)
可视化稳定
隐含的相关性
> emwa\_series\_cor = function(i = 1,j = 2){+ if((min(i,j)== 1)&(max(i,j)== 2)){+ a = 1; B = 5; AB = 2}+}
2 BEKK(1,1)模型:
BEKK11(dat_arma)
隐含的相关性
对单变量GARCH模型残差建模
第一步可能是思考残差的动态(联结)散布。单变量边际散布是
而联结密度为
可视化 密度
查看相关性是否随着工夫的推移而稳固。
斯皮尔曼相关性
肯德尔相关性
对相关性建模,思考DCC模型
对数据进行预测
> fcst = dccforecast(dcc.fit,n.ahead = 200)
咱们曾经齐全把握了多元GARCH模型的应用,接下来就能够撒手去用R解决工夫序列了!
最受欢迎的见解
1.R语言ARMA-EGARCH模型、集成预测算法对SPX理论稳定率进行预测
2.R语言基于ARMA-GARCH-VaR模型拟合和预测实证
3.R语言基于ARMA-GARCH过程的VAR拟合和预测
4.GARCH(1,1),MA以及历史模拟法的VaR比拟
5.R语言多元COPULA GARCH 模型工夫序列预测
6.matlab预测ARMA-GARCH 条件均值和方差模型
7.R语言对S&P500股票指数进行ARIMA + GARCH交易策略
8.R语言: GARCH模型股票交易量的钻研道琼斯股票市场指数
9.R语言GARCH-DCC模型和DCC(MVT)建模预计