include <opencv2/opencv.hpp>

include <iostream>

include <algorithm>

include <time.h>

using namespace cv;
using namespace std;
// 输出参数
struct Inputparama {

int thresh = 30;                               // 背景辨认阈值,该值越小,则辨认非背景区面积越大,需有适合范畴,目前为5-60int transparency = 255;                        // 背景替换色透明度,255为实,0为通明int size = 7;                                  // 非背景区边缘虚化参数,该值越大,则边缘虚化水平越显著cv::Point p = cv::Point(0, 0);                 // 背景色采样点,可通过人机交互获取,也可用默认(0,0)点色彩作为背景色cv::Scalar color = cv::Scalar(255, 255, 255);  // 背景色

};
cv::Mat BackgroundSeparation(cv::Mat src, Inputparama input);
void Clear_MicroConnected_Areas(cv::Mat src, cv::Mat &dst, double min_area);
// 计算差值均方根
int geiDiff(uchar b,uchar g,uchar r,uchar tb,uchar tg,uchar tr)
{

return  int(sqrt(((b - tb)*(b - tb) + (g - tg)*(g - tg) + (r - tr)*(r - tr))/3));

}
int main()
{

cv::Mat src = imread("111.jpg");Inputparama input;input.thresh = 100;input.transparency = 255;input.size = 6;input.color = cv::Scalar(0, 0, 255);clock_t s, e;s = clock();cv::Mat result = BackgroundSeparation(src, input);e = clock();double dif = e - s;cout << "time:" << dif << endl;imshow("original", src);imshow("result", result);imwrite("result1.png", result);waitKey(0);return 0;

}
// 背景拆散
cv::Mat BackgroundSeparation(cv::Mat src, Inputparama input)
{

cv::Mat bgra, mask;// 转化为BGRA格局,带透明度,4通道cvtColor(src, bgra, COLOR_BGR2BGRA);mask = cv::Mat::zeros(bgra.size(), CV_8UC1);int row = src.rows;int col = src.cols;// 异样数值修改input.p.x = max(0, min(col, input.p.x));input.p.y = max(0, min(row, input.p.y));input.thresh = max(5, min(200, input.thresh));input.transparency = max(0, min(255, input.transparency));input.size = max(0, min(30, input.size));// 确定背景色uchar ref_b = src.at<Vec3b>(input.p.y, input.p.x)[0];uchar ref_g = src.at<Vec3b>(input.p.y, input.p.x)[1];uchar ref_r = src.at<Vec3b>(input.p.y, input.p.x)[2];// 计算蒙版区域(掩膜)for (int i = 0; i < row; ++i){    uchar *m = mask.ptr<uchar>(i);    uchar *b = src.ptr<uchar>(i);    for (int j = 0; j < col; ++j)    {        if ((geiDiff(b[3*j],b[3*j+1],b[3*j+2],ref_b,ref_g,ref_r)) >input.thresh)        {            m[j] = 255;        }    }}cv::Mat tmask = cv::Mat::zeros(row + 50, col + 50, CV_8UC1);mask.copyTo(tmask(cv::Range(25, 25 + mask.rows), cv::Range(25, 25 + mask.cols)));// 寻找轮廓,作用是填充轮廓内黑洞vector<vector<Point>> contour;vector<Vec4i> hierarchy;// RETR_TREE以网状结构提取所有轮廓,CHAIN_APPROX_NONE获取轮廓的每个像素findContours(tmask, contour, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_NONE);drawContours(tmask, contour, -1, Scalar(255), FILLED,16);// 黑帽运算获取同背景色相似的区域,[商品期货](https://www.gendan5.com/futures/cf.html)辨认后填充cv::Mat hat;cv::Mat element = getStructuringElement(MORPH_ELLIPSE, Size(31, 31));cv::morphologyEx(tmask, hat, MORPH_BLACKHAT, element);hat.setTo(255, hat > 0);cv::Mat hatd;Clear_MicroConnected_Areas(hat, hatd, 450);tmask = tmask + hatd;mask = tmask(cv::Range(25, 25 + mask.rows), cv::Range(25, 25 + mask.cols)).clone();// 掩膜滤波,是为了边缘虚化cv::blur(mask, mask, Size(2 * input.size+1, 2 * input.size + 1));// 改色for (int i = 0; i < row; ++i){    uchar *r = bgra.ptr<uchar>(i);    uchar *m = mask.ptr<uchar>(i);    for (int j = 0; j < col; ++j)    {        // 蒙版为0的区域就是规范背景区        if (m[j] == 0)        {            r[4 * j] = uchar(input.color[0]);            r[4 * j + 1] = uchar(input.color[1]);            r[4 * j + 2] = uchar(input.color[2]);            r[4 * j + 3] = uchar(input.transparency);        }        // 不为0且不为255的区域是轮廓区域(边缘区),须要虚化解决        else if (m[j] != 255)        {            // 边缘处按比例上色            int newb = (r[4 * j] * m[j] * 0.3 + input.color[0] * (255 - m[j])*0.7) / ((255 - m[j])*0.7+ m[j] * 0.3);            int newg = (r[4 * j+1] * m[j] * 0.3 + input.color[1] * (255 - m[j])*0.7) / ((255 - m[j])*0.7 + m[j] * 0.3);            int newr = (r[4 * j + 2] * m[j] * 0.3 + input.color[2] * (255 - m[j])*0.7) / ((255 - m[j])*0.7 + m[j] * 0.3);            int newt = (r[4 * j + 3] * m[j] * 0.3 + input.transparency * (255 - m[j])*0.7) / ((255 - m[j])*0.7 + m[j] * 0.3);            newb = max(0, min(255, newb));            newg = max(0, min(255, newg));            newr = max(0, min(255, newr));            newt = max(0, min(255, newt));            r[4 * j] = newb;            r[4 * j + 1] = newg;            r[4 * j + 2] = newr;            r[4 * j + 3] = newt;        }    }}return bgra;

}
void Clear_MicroConnected_Areas(cv::Mat src, cv::Mat &dst, double min_area)
{

// 备份复制dst = src.clone();std::vector<std::vector<cv::Point> > contours;  // 创立轮廓容器std::vector<cv::Vec4i>     hierarchy;// 寻找轮廓的函数// 第四个参数CV_RETR_EXTERNAL,示意寻找最外围轮廓// 第五个参数CV_CHAIN_APPROX_NONE,示意保留物体边界上所有间断的轮廓点到contours向量内cv::findContours(src, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE, cv::Point());if (!contours.empty() && !hierarchy.empty()){    std::vector<std::vector<cv::Point> >::const_iterator itc = contours.begin();    // 遍历所有轮廓    while (itc != contours.end())    {        // 定位以后轮廓所在位置        cv::Rect rect = cv::boundingRect(cv::Mat(*itc));        // contourArea函数计算连通区面积        double area = contourArea(*itc);        // 若面积小于设置的阈值        if (area < min_area)        {            // 遍历轮廓所在位置所有像素点            for (int i = rect.y; i < rect.y + rect.height; i++)            {                uchar *output_data = dst.ptr<uchar>(i);                for (int j = rect.x; j < rect.x + rect.width; j++)                {                    // 将连通区的值置0                    if (output_data[j] == 255)                    {                        output_data[j] = 0;                    }                }            }        }        itc++;    }}

}