洛谷P3195 [HNOI2008]玩具装箱
题目介绍
链接:https://www.luogu.com.cn/prob...
解题报告
解法一(TLE)
看到题首先写出暴力版本dp
#include <iostream>#include <algorithm>typedef long long ll;#define read(x) scanf("%lld", &x)using namespace std;const int N = 50010;ll sumc[N], f[N], n, L;int main() { read(n); read(L); ll c; for (int i = 1; i <= n; i++) { read(c); sumc[i] = sumc[i - 1] + c; } for (int j = 1; j <= n; j++) { f[j] = 0x3f3f3f3f3f3f3f3f; for (int i = 0; i < j; i++) { f[j] = min(f[j], f[i] + (j - i - 1 + sumc[j] - sumc[i] - L) * (j - i - 1 + sumc[j] - sumc[i] - L)); } } cout << f[n]; return 0;}
易知上述解法是O(n^2)的工夫复杂度,而该题样例给到了5乘10的4次方,这个解法是会TLE的。因而应该是能够依据动静转移方程优化的。
上述解法提交后和意料的一样,有三个测试点TLE了,然而另外七个测试点AC证实动静转移方程没有问题,因而接下来能够抛开题意分心依据该动静转移方程进行优化
解法二(AC) 依据斜率优化
动静转移方程为
f[j] = min(f[j], f[i] + (j - i - 1 + sumc[j] - sumc[i] - L) * (j - i - 1 + sumc[j] - sumc[i] - L));
令
$$a[i]=sumc[i]+i$$
$$b[i]=sumc[i]+i+L+1$$
简化计算
上式可转化为
$$f[j] = f[i] + (a[j] - b[i]) ^ 2$$
开展得
$$f[i]+b[i]^2=2a[j]*b[i]-a[j]^2+f[j]$$
当j确定时,a[j]为常量并且大于0,将f[i]+b[i]^2作为y,b[i]作为x
则可简化为
$$y=2a[j]*x-a[j]^2+f[j]$$
2a[j] > 0,所以斜率大于0
当y轴截距最小时,f[j]最小
将斜率为2a[j]的线向上移,第一个碰到的点即为能使f[j]最小的点,凸包原理得点i处斜率是第一个大于绿线斜率的点
依据凸包原理,只需保护一个凸包即可
这题a[j]也是枯燥递增的,因而后面不合乎的点必定不会再被用到了,能够间接抛弃,只需保护无限几个点即可
代码如下:
#include <iostream>#include <algorithm>typedef long long ll;#define read(x) scanf("%lld", &x)using namespace std;const int N = 50010;ll sumc[N], f[N], n, L;ll hh, tt, q[N];ll A(ll i) { return sumc[i] + i;}ll B(ll i) { return (ll) sumc[i] + i + L + 1;}ll Y(ll i) { return f[i] + B(i) * B(i);}ll X(ll i) { return B(i);}double slope(ll i1, ll i2) { return (double) (Y(i2) - Y(i1)) / (double) ((X(i2) - X(i1)));}int main() { read(n); read(L); ll c; hh = tt = 0; for (int i = 1; i <= n; i++) { read(c); sumc[i] = sumc[i - 1] + c; } for (int j = 1; j <= n; j++) { while (hh < tt && Y(q[hh + 1]) - Y(q[hh]) < (X(q[hh + 1]) - X(q[hh])) * 2 * A(j)) { hh++; } f[j] = f[q[hh]] + (A(j) - B(q[hh])) * (A(j) - B(q[hh])); while (hh < tt && slope(j, q[tt - 1]) <= slope(q[tt], q[tt - 1])) { tt--; } q[++tt] = j; } cout << f[n]; return 0;}
胜利AC
P4072 [SDOI2016]征途
题目介绍
链接:https://www.luogu.com.cn/prob...
解题报告
解法一
思考动静转移方程
f[i] [j]示意走了i段当初在j地
上一步为f[i - 1] [k] k可能为0~j-1地
写出以下代码
#include <iostream>#include <algorithm>#include <vector>#include <cstring>typedef long long ll;#define read(x) scanf("%d", &x)using namespace std;const int N = 3010;int n, m, sum[N];ll f[N][N];int main() { read(n); read(m); for (int i = 1; i <= n; i++) { int c; read(c); sum[i] = sum[i - 1] + c; } memset(f, 0x3f, sizeof f); f[0][0] = 0; for (int i = 1; i <= m; i++) { for (int j = 1; n - j >= m - i; j++) { for (int k = 0; k < j; k++) { f[i][j] = min(f[i][j], f[i - 1][k] + (sum[j] - sum[k]) * (sum[j] - sum[k])); } } } ll res = f[m][n] * m - sum[n] * sum[n]; cout << res; return 0;}
提交后可看到因为复杂度较高,有一个样例仍然是过不了的
解法二
将动静转移方程移项得:
$$f[i-1][k] + sum[k] ^2 = f[i,j] + 2* sum[j] * sum[k] - sum[j] ^2$$
令f[i-1] [k] + sum[k] ^2 = y
sum[k] = x
斜率为2*sum[j] > 0
因为sum[j]为定量,所以使截距最小即可
#include <iostream>#include <algorithm>#include <vector>#include <cstring>typedef long long ll;#define read(x) scanf("%d", &x)using namespace std;const int N = 3010;int n, m, sum[N], q[N], hh, tt;ll f[N][N];ll X(int k) { return sum[k];}ll Y(int i, int k) { return f[i - 1][k] + sum[k] * sum[k];}double slope(int i, int k1, int k2) { return (double) (Y(i, k1) - Y(i, k2)) / (double) (X(k1) - X(k2));}int main() { read(n); read(m); for (int i = 1; i <= n; i++) { int c; read(c); sum[i] = sum[i - 1] + c; } memset(f, 0x3f, sizeof f); for (int i = 1; i <= n; i++) { f[1][i] = sum[i] * sum[i]; } f[0][0] = 0; for (int i = 2; i <= m; i++) { hh = tt = 0; for (int j = 1; n - j >= m - i; j++) { while (hh < tt && slope(i, q[hh], q[hh + 1]) < 2 * sum[j]) { hh++; } f[i][j] = f[i - 1][q[hh]] + (sum[j] - sum[q[hh]]) * (sum[j] - sum[q[hh]]); while (hh < tt && slope(i, j, q[tt - 1]) <= slope(i, q[tt], q[tt - 1])) { tt--; } q[++tt] = j; } } ll res = f[m][n] * m - sum[n] * sum[n]; cout << res; return 0;}
胜利AC
AcWing Q301 工作安顿
题目介绍
链接:https://www.acwing.com/proble...
解题报告
解法一
#include <iostream>#include <algorithm>#include <vector>#include <cstring>typedef long long ll;#define read(x) scanf("%d", &x)#define read(x, y) scanf("%d%d", &x, &y)using namespace std;const int N = 5010;int n, s, sumt[N], sumc[N], f[N];int main() { read(n, s); for (int i = 1; i <= n; i++) { int t, c; read(t, c); sumt[i] = sumt[i - 1] + t; sumc[i] = sumc[i - 1] + c; } for (int i = 1; i <= n; i++) { f[i] = 0x3f3f3f3f; for (int j = 0; j < i; j++) { f[i] = min(f[i], f[j] + (sumc[n] - sumc[j]) * s + (sumc[i] - sumc[j]) * sumt[i]); } } cout << f[n]; return 0;}
同上优化
解法二
#include <iostream>#include <algorithm>#include <vector>#include <cstring>typedef long long ll;#define read(x, y) scanf("%lld%lld", &x, &y)using namespace std;const int N = 300010;ll n, s, sumt[N], sumc[N], f[N];int hh, tt, q[N];ll X(int i) { return sumc[i];}ll Y(int i) { return f[i];}double slope(int i1, int i2) { return (double) (Y(i1) - Y(i2)) / (double) (X(i1) - X(i2));}int main() { read(n, s); for (int i = 1; i <= n; i++) { ll t, c; read(t, c); sumt[i] = sumt[i - 1] + t; sumc[i] = sumc[i - 1] + c; } for (int i = 1; i <= n; i++) { while (hh < tt && slope(q[hh], q[hh + 1]) < s + sumt[i]) { hh++; } f[i] = f[q[hh]] + (sumc[n] - sumc[q[hh]]) * s + (sumc[i] - sumc[q[hh]]) * sumt[i]; while (hh < tt && slope(i, q[tt - 1]) <= slope(q[tt], q[tt - 1])) { tt--; } q[++tt] = i; } cout << f[n]; return 0;}