概述

在线上遇到了因节点名哈希值抵触导致的局部机器无负载问题。10台机器中,抵触的机器达到了4台之多。假如哈希的概率是均匀的。10台机器中,不存在抵触的概率靠近

>>> 1 - (1.0 / (2 ** 32)) * 100.9999999976716936

实际上,10台中哈希值抵触了6台。于是看源码找答案。

过程

先从phash2 api动手

erlang 的 api调用形式和 linux有相似之处。通过函数指针数组。
erl_bif_list.h 中看到,咱们调用的phash2对应phash2_2。

BIF_LIST(am_erlang,am_phash,2,phash_2,phash_2,37)BIF_LIST(am_erlang,am_phash2,1,phash2_1,phash2_1,38)BIF_LIST(am_erlang,am_phash2,2,phash2_2,phash2_2,39)

bif.c:4905

BIF_RETTYPE phash2_2(BIF_ALIST_2){    Uint32 hash;    Uint32 final_hash;    Uint32 range;    Eterm trap_state = THE_NON_VALUE;    /* Check for special case 2^32 */    if (term_equals_2pow32(BIF_ARG_2)) {    range = 0;    } else {    Uint u;    if (!term_to_Uint(BIF_ARG_2, &u) || ((u >> 16) >> 16) != 0 || !u) {        BIF_ERROR(BIF_P, BADARG);    }    range = (Uint32) u;    }    hash = trapping_make_hash2(BIF_ARG_1, &trap_state, BIF_P);    if (trap_state != THE_NON_VALUE) {        BIF_TRAP2(&bif_trap_export[BIF_phash2_2], BIF_P, trap_state, BIF_ARG_2);    }    if (range) {    final_hash = hash % range; /* [0..range-1] */    } else {    final_hash = hash;    }    /*     * Return either a small or a big. Use the heap for bigs if there is room.     */#if defined(ARCH_64)    BIF_RET(make_small(final_hash));#else    if (IS_USMALL(0, final_hash)) {    BIF_RET(make_small(final_hash));    } else {    Eterm* hp = HAlloc(BIF_P, BIG_UINT_HEAP_SIZE);    BIF_RET(uint_to_big(final_hash, hp));    }#endif}

通过调试能够确认

1298    {(gdb) bt#0  make_hash2_helper (term_param=203, can_trap=1, state_mref_write_back=0x7fd2b7bfc598, p=0x7fd2b9900b88) at beam/utils.c:1298#1  0x0000558545a0a5eb in trapping_make_hash2 (term=203, state_mref_write_back=0x7fd2b7bfc598, p=0x7fd2b9900b88) at beam/utils.c:1983#2  0x0000558545a284ad in phash2_1 (A__p=0x7fd2b9900b88, BIF__ARGS=0x7fd2ba200200, A__I=0x7fd2b7d5ef60) at beam/bif.c:4897#3  0x00005585459455b2 in process_main (x_reg_array=0x7fd2ba200200, f_reg_array=0x7fd2ba202240) at x86_64-unknown-linux-gnu/opt/smp/beam_cold.h:121#4  0x00005585459613ac in sched_thread_func (vesdp=0x7fd2b89440c0) at beam/erl_process.c:8498#5  0x0000558545c47a63 in thr_wrapper (vtwd=0x7ffcd94d55a0) at pthread/ethread.c:122#6  0x00007fd2fb2896db in start_thread (arg=0x7fd2b7bff700) at pthread_create.c:463#7  0x00007fd2fadaa71f in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95

phash2 对atom的解决

erts/emulator/beam/utils.c:1418
间接用atom的值找到erts_atom_table对应的哈希值。

    if (primary_tag(term) == TAG_PRIMARY_IMMED1) {    switch (term & _TAG_IMMED1_MASK) {    case _TAG_IMMED1_IMMED2:        switch (term & _TAG_IMMED2_MASK) {        case _TAG_IMMED2_ATOM:            /* Fast, but the poor hash value should be mixed. */            return atom_tab(atom_val(term))->slot.bucket.hvalue;        }

能够看到,erts_atom_table是全局的,下限为1024*1024哈希表。这也是为什么原子最大只能存储1048576。
erts/emulator/beam/atom.h:atom_tab

atom_tab(Uint i){    return (Atom *) erts_index_lookup(&erts_atom_table, i);}

erts/emulator/beam/index.h:erts_index_lookup
seg_table是一个 1024*1024 的二维数组

ERTS_GLB_INLINE IndexSlot*erts_index_lookup(IndexTable* t, Uint ix){    return t->seg_table[ix>>INDEX_PAGE_SHIFT][ix&INDEX_PAGE_MASK];}

搜寻erts_atom_table从代码能够看到,是生成原子时,在批改erts_atom_table时,计算的哈希值。问题的关键在于原子的哈希值是如何计算的。

atom hash

从atom.c:init_atom_table中能够看到。原子的哈希值是通过init时赋值的函数指针计算的,具体逻辑如下:
atom.c:atom_hash

static HashValueatom_hash(Atom *obj){    byte *p = obj->name;    int len = obj->len;    HashValue h = 0, g;    byte v;    while (len--)    {        v = *p++;        /* latin1 clutch for r16 */        if (len && (v & 0xFE) == 0xC2 && (*p & 0xC0) == 0x80)        {            v = (v << 6) | (*p & 0x3F);            p++;            len--;        }        /* normal hashpjw follows for v */        h = (h << 4) + v;        if ((g = h & 0xf0000000))        {            h ^= (g >> 24);            h ^= g;        }    }    return h;}

调试确认,节点名atom的计算,也是走这里,那么为什么会抵触呢?

Thread 6 "2_scheduler" hit Breakpoint 1, atom_hash (obj=0x7f39bfef92d0) at beam/atom.c:131131         byte* p = obj->name;(gdb) p obj->name$19 = (byte *) 0x7f3a08580180 "test1@ubuntu"(gdb) p obj->len$20 = 12(gdb) bt#0  atom_hash (obj=0x7f39bfef92d0) at beam/atom.c:131#1  0x000055c20bd115ab in hash_fetch (h=0x55c20c1d8040 <erts_atom_table>, tmpl=0x7f39bfef92d0, hash=0x55c20bd12a67 <atom_hash>,     cmp=0x55c20bd12b48 <atom_cmp>) at beam/hash.h:133#2  0x000055c20bd11d27 in hash_get (h=0x55c20c1d8040 <erts_atom_table>, tmpl=0x7f39bfef92d0) at beam/hash.c:228#3  0x000055c20bd124bc in index_get (t=0x55c20c1d8040 <erts_atom_table>, tmpl=0x7f39bfef92d0) at beam/index.c:109#4  0x000055c20bd12fb7 in erts_atom_put_index (name=0x7f3a08580180 "test1@ubuntu", len=12, enc=ERTS_ATOM_ENC_UTF8, trunc=1) at beam/atom.c:299#5  0x000055c20bd13115 in erts_atom_put (name=0x7f3a08580180 "test1@ubuntu", len=12, enc=ERTS_ATOM_ENC_UTF8, trunc=1) at beam/atom.c:350#6  0x000055c20bc57596 in list_to_atom_1 (A__p=0x7f39bf203588, BIF__ARGS=0x7f39c67c4280, A__I=0x7f39be3d9590) at beam/bif.c:2913#7  0x000055c20bb65087 in process_main (x_reg_array=0x7f39c67c4280, f_reg_array=0x7f39c67c6300) at x86_64-unknown-linux-gnu/opt/smp/beam_hot.h:331#8  0x000055c20bb973ac in sched_thread_func (vesdp=0x7f39c4f4e480) at beam/erl_process.c:8498#9  0x000055c20be7da63 in thr_wrapper (vtwd=0x7ffc7f688b60) at pthread/ethread.c:122#10 0x00007f3a078816db in start_thread (arg=0x7f39bfefc700) at pthread_create.c:463#11 0x00007f3a073a271f in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95        (gdb) printf "%d,%s\n", h, obj->name1385189,test1@ubuntu(gdb) printf "%d,%s\n", h, obj->name1385013,test4@ubuntu(gdb) printf "%d,%s\n", h, obj->name1384965,test7@ubuntu

用python写了同样的算法,发现抵触概率真的很高,参考论断里的链接。

def atom_hash(s):    h = 0    g = 0    for v in s:        h = (h << 4) + ord(v)        g = h & 0xf0000000        if g:            h ^= (g >> 24)            h ^= g    return hfor num in range(10):    value = "test{0}@ubuntu".format(num)    hash_val = atom_hash(value)    print(value, hash_val)test0@ubuntu 1385205test1@ubuntu 1385189test2@ubuntu 1385173test3@ubuntu 1385157test4@ubuntu 1385013test5@ubuntu 1384997test6@ubuntu 1384981test7@ubuntu 1384965test8@ubuntu 1385077test9@ubuntu 1385061

论断

  • 原子的哈希值和原子的字符串展现相干,即同样的原子,在不同的节点上(同样的erlang vm版本,同样的哈希算法),那么该原子的哈希值是一样的。
  • atom_hash应用了hashpjw算法,该算法,即erlang原子哈希值的生成算法很容易抵触。没找到更权威的材料了:https://blog.csdn.net/iteye_1...