概述
在线上遇到了因节点名哈希值抵触导致的局部机器无负载问题。10台机器中,抵触的机器达到了4台之多。假如哈希的概率是均匀的。10台机器中,不存在抵触的概率靠近
>>> 1 - (1.0 / (2 ** 32)) * 100.9999999976716936
实际上,10台中哈希值抵触了6台。于是看源码找答案。
过程
先从phash2 api动手
erlang 的 api调用形式和 linux有相似之处。通过函数指针数组。
erl_bif_list.h 中看到,咱们调用的phash2对应phash2_2。
BIF_LIST(am_erlang,am_phash,2,phash_2,phash_2,37)BIF_LIST(am_erlang,am_phash2,1,phash2_1,phash2_1,38)BIF_LIST(am_erlang,am_phash2,2,phash2_2,phash2_2,39)
bif.c:4905
BIF_RETTYPE phash2_2(BIF_ALIST_2){ Uint32 hash; Uint32 final_hash; Uint32 range; Eterm trap_state = THE_NON_VALUE; /* Check for special case 2^32 */ if (term_equals_2pow32(BIF_ARG_2)) { range = 0; } else { Uint u; if (!term_to_Uint(BIF_ARG_2, &u) || ((u >> 16) >> 16) != 0 || !u) { BIF_ERROR(BIF_P, BADARG); } range = (Uint32) u; } hash = trapping_make_hash2(BIF_ARG_1, &trap_state, BIF_P); if (trap_state != THE_NON_VALUE) { BIF_TRAP2(&bif_trap_export[BIF_phash2_2], BIF_P, trap_state, BIF_ARG_2); } if (range) { final_hash = hash % range; /* [0..range-1] */ } else { final_hash = hash; } /* * Return either a small or a big. Use the heap for bigs if there is room. */#if defined(ARCH_64) BIF_RET(make_small(final_hash));#else if (IS_USMALL(0, final_hash)) { BIF_RET(make_small(final_hash)); } else { Eterm* hp = HAlloc(BIF_P, BIG_UINT_HEAP_SIZE); BIF_RET(uint_to_big(final_hash, hp)); }#endif}
通过调试能够确认
1298 {(gdb) bt#0 make_hash2_helper (term_param=203, can_trap=1, state_mref_write_back=0x7fd2b7bfc598, p=0x7fd2b9900b88) at beam/utils.c:1298#1 0x0000558545a0a5eb in trapping_make_hash2 (term=203, state_mref_write_back=0x7fd2b7bfc598, p=0x7fd2b9900b88) at beam/utils.c:1983#2 0x0000558545a284ad in phash2_1 (A__p=0x7fd2b9900b88, BIF__ARGS=0x7fd2ba200200, A__I=0x7fd2b7d5ef60) at beam/bif.c:4897#3 0x00005585459455b2 in process_main (x_reg_array=0x7fd2ba200200, f_reg_array=0x7fd2ba202240) at x86_64-unknown-linux-gnu/opt/smp/beam_cold.h:121#4 0x00005585459613ac in sched_thread_func (vesdp=0x7fd2b89440c0) at beam/erl_process.c:8498#5 0x0000558545c47a63 in thr_wrapper (vtwd=0x7ffcd94d55a0) at pthread/ethread.c:122#6 0x00007fd2fb2896db in start_thread (arg=0x7fd2b7bff700) at pthread_create.c:463#7 0x00007fd2fadaa71f in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95
phash2 对atom的解决
erts/emulator/beam/utils.c:1418
间接用atom的值找到erts_atom_table对应的哈希值。
if (primary_tag(term) == TAG_PRIMARY_IMMED1) { switch (term & _TAG_IMMED1_MASK) { case _TAG_IMMED1_IMMED2: switch (term & _TAG_IMMED2_MASK) { case _TAG_IMMED2_ATOM: /* Fast, but the poor hash value should be mixed. */ return atom_tab(atom_val(term))->slot.bucket.hvalue; }
能够看到,erts_atom_table是全局的,下限为1024*1024哈希表。这也是为什么原子最大只能存储1048576。
erts/emulator/beam/atom.h:atom_tab
atom_tab(Uint i){ return (Atom *) erts_index_lookup(&erts_atom_table, i);}
erts/emulator/beam/index.h:erts_index_lookup
seg_table是一个 1024*1024 的二维数组
ERTS_GLB_INLINE IndexSlot*erts_index_lookup(IndexTable* t, Uint ix){ return t->seg_table[ix>>INDEX_PAGE_SHIFT][ix&INDEX_PAGE_MASK];}
搜寻erts_atom_table从代码能够看到,是生成原子时,在批改erts_atom_table时,计算的哈希值。问题的关键在于原子的哈希值是如何计算的。
atom hash
从atom.c:init_atom_table中能够看到。原子的哈希值是通过init时赋值的函数指针计算的,具体逻辑如下:
atom.c:atom_hash
static HashValueatom_hash(Atom *obj){ byte *p = obj->name; int len = obj->len; HashValue h = 0, g; byte v; while (len--) { v = *p++; /* latin1 clutch for r16 */ if (len && (v & 0xFE) == 0xC2 && (*p & 0xC0) == 0x80) { v = (v << 6) | (*p & 0x3F); p++; len--; } /* normal hashpjw follows for v */ h = (h << 4) + v; if ((g = h & 0xf0000000)) { h ^= (g >> 24); h ^= g; } } return h;}
调试确认,节点名atom的计算,也是走这里,那么为什么会抵触呢?
Thread 6 "2_scheduler" hit Breakpoint 1, atom_hash (obj=0x7f39bfef92d0) at beam/atom.c:131131 byte* p = obj->name;(gdb) p obj->name$19 = (byte *) 0x7f3a08580180 "test1@ubuntu"(gdb) p obj->len$20 = 12(gdb) bt#0 atom_hash (obj=0x7f39bfef92d0) at beam/atom.c:131#1 0x000055c20bd115ab in hash_fetch (h=0x55c20c1d8040 <erts_atom_table>, tmpl=0x7f39bfef92d0, hash=0x55c20bd12a67 <atom_hash>, cmp=0x55c20bd12b48 <atom_cmp>) at beam/hash.h:133#2 0x000055c20bd11d27 in hash_get (h=0x55c20c1d8040 <erts_atom_table>, tmpl=0x7f39bfef92d0) at beam/hash.c:228#3 0x000055c20bd124bc in index_get (t=0x55c20c1d8040 <erts_atom_table>, tmpl=0x7f39bfef92d0) at beam/index.c:109#4 0x000055c20bd12fb7 in erts_atom_put_index (name=0x7f3a08580180 "test1@ubuntu", len=12, enc=ERTS_ATOM_ENC_UTF8, trunc=1) at beam/atom.c:299#5 0x000055c20bd13115 in erts_atom_put (name=0x7f3a08580180 "test1@ubuntu", len=12, enc=ERTS_ATOM_ENC_UTF8, trunc=1) at beam/atom.c:350#6 0x000055c20bc57596 in list_to_atom_1 (A__p=0x7f39bf203588, BIF__ARGS=0x7f39c67c4280, A__I=0x7f39be3d9590) at beam/bif.c:2913#7 0x000055c20bb65087 in process_main (x_reg_array=0x7f39c67c4280, f_reg_array=0x7f39c67c6300) at x86_64-unknown-linux-gnu/opt/smp/beam_hot.h:331#8 0x000055c20bb973ac in sched_thread_func (vesdp=0x7f39c4f4e480) at beam/erl_process.c:8498#9 0x000055c20be7da63 in thr_wrapper (vtwd=0x7ffc7f688b60) at pthread/ethread.c:122#10 0x00007f3a078816db in start_thread (arg=0x7f39bfefc700) at pthread_create.c:463#11 0x00007f3a073a271f in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95 (gdb) printf "%d,%s\n", h, obj->name1385189,test1@ubuntu(gdb) printf "%d,%s\n", h, obj->name1385013,test4@ubuntu(gdb) printf "%d,%s\n", h, obj->name1384965,test7@ubuntu
用python写了同样的算法,发现抵触概率真的很高,参考论断里的链接。
def atom_hash(s): h = 0 g = 0 for v in s: h = (h << 4) + ord(v) g = h & 0xf0000000 if g: h ^= (g >> 24) h ^= g return hfor num in range(10): value = "test{0}@ubuntu".format(num) hash_val = atom_hash(value) print(value, hash_val)test0@ubuntu 1385205test1@ubuntu 1385189test2@ubuntu 1385173test3@ubuntu 1385157test4@ubuntu 1385013test5@ubuntu 1384997test6@ubuntu 1384981test7@ubuntu 1384965test8@ubuntu 1385077test9@ubuntu 1385061
论断
- 原子的哈希值和原子的字符串展现相干,即同样的原子,在不同的节点上(同样的erlang vm版本,同样的哈希算法),那么该原子的哈希值是一样的。
- atom_hash应用了hashpjw算法,该算法,即erlang原子哈希值的生成算法很容易抵触。没找到更权威的材料了:https://blog.csdn.net/iteye_1...