摘要:最小二乘法是一种在误差预计、不确定度、零碎辨识及预测、预报等数据处理诸多学科畛域失去广泛应用的数学工具。最小二乘很简略,也在业界失去了宽泛应用。
本文分享自华为云社区《最小二乘法介绍》,作者:Yan 。
最小二乘法是一种在误差预计、不确定度、零碎辨识及预测、预报等数据处理诸多学科畛域失去广泛应用的数学工具。最小二乘很简略,也在业界失去了宽泛应用。
然而对于最小二乘法和它的故事,兴许很多人并不理解,明天给大家做一下分享。
1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。通过40天的跟踪观测后,因为谷神星运行至太阳背地,使得皮亚齐失去了谷神星的地位。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,然而依据大多数人计算的后果来寻找谷神星都没有后果。
时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥伯斯依据高斯计算出来的轨道从新发现了谷神星。
高斯应用的最小二乘法的办法发表于1809年他的著述《天体静止论》中,而法国科学家勒让德于1806年独立发现“最小二乘法”,但因不为世人所知而石破天惊。
为了不便大家了解最小二乘法,给大家讲个故事。
假如身高是变量X,体重是变量Y,咱们都晓得身高与体重有比拟间接的关系。生存教训通知咱们:个别身高比拟高的人,体重也会比拟大。然而这只是咱们直观的感触,只是很粗略的定性的剖析。
在数学世界里,咱们大部分时候须要进行严格的定量计算:能不能依据一个人的身高,通过一个式子就能计算出他或者她的规范体重?
咱们能够采样一批人的身高体重数据, (x1,y1),(x2,y2),⋯,(xn,yn),其中x是身高,y是体重。
生存常识通知咱们:身高与体重是一个近似的线性关系,用最简略的数学语言来形容就是y = \beta_0+\beta_1xy=0+1x。
于是,接下来的工作就变成:怎么求出这个0与1呢?
为了计算0,1的值,咱们采取如下规定:0,1应该使计算出来的函数曲线与察看值的差的平方和最小。用数学公式形容就是:
其中,y_{ie}yie示意依据y=\beta_0 + \beta_1xy=0+1x估算进去的值,y_iyi是察看失去的实在值。
这样,样本的回归模型很容易得出:
当初须要确定0、1,使cost function最小。大家很容易想到,对该函数求导即可找到最小值:
将这两个方程整顿后应用克莱姆法令,很容易求解得出:
依据这个公式,只须要将样本都带入就能够求解出相应的参数。
如果咱们推广到更个别的状况,如果有更多的模型变量x1,x2,⋯,xm(留神:x_1x1是指 一个样本,x1是指样本里的一个模型相干的变量),能够用线性函数示意如下:
y(x1,⋯,xm;0,⋯,m)=0+1x1+⋯+mxm
对于n个样本来说,能够用如下线性方程组示意:
如果将样本矩阵x_i^hxih记为矩阵A,将参数矩阵记为向量\beta,实在值记为向量Y,上述线性方程组能够示意为:
即A \beta = YA=Y
对于最小二乘来说,最终的矩阵表达形式能够示意为:
min∣∣A−Y∣∣2
最初的最优解为:
=(ATA)−1ATY
2021华为云 AI 实战营——华为云员工都在学的AI实战营,快来报名收费学习吧~
点击关注,第一工夫理解华为云陈腐技术~