欢送拜访我的GitHub
https://github.com/zq2599/blog_demos
内容:所有原创文章分类汇总及配套源码,波及Java、Docker、Kubernetes、DevOPS等;
《disruptor笔记》系列链接
- 疾速入门
- Disruptor类剖析
- 环形队列的根底操作(不必Disruptor类)
- 事件生产知识点小结
- 事件生产实战
- 常见场景
- 期待策略
- 知识点补充(终篇)
本篇概览
- 本文是《disruptor笔记》系列的第三篇,次要工作是编码实现音讯生产和生产,与《disruptor笔记之一:疾速入门》不同的是,本次开发不应用Disruptor类,和Ring Buffer(环形队列)相干的操作都是本人写代码实现;
- 这种脱离Disruptor类操作Ring Buffer的做法,不适宜用在生产环境,但在学习Disruptor的过程中,这是种高效的学习伎俩,通过本篇实战后,在今后应用Disruptor时,您在开发、调试、优化等各种场景下都能更加得心应手;
- 简略的音讯生产生产已不能满足咱们的学习激情,明天的实战要挑战以下三个场景:
- 100个事件,单个消费者生产;
- 100个事件,三个消费者,每个都单独生产这个100个事件;
- 100个事件,三个消费者独特生产这个100个事件;
前文回顾
为了实现本篇的实战,前文《disruptor笔记之二:Disruptor类剖析》已做了充沛的钻研剖析,倡议观看,这里简略回顾以下Disruptor类的几个外围性能,这也是咱们编码时要实现的:
- 创立环形队列(RingBuffer对象)
- 创立SequenceBarrier对象,用于接管ringBuffer中的可生产事件
- 创立BatchEventProcessor,负责生产事件
- 绑定BatchEventProcessor对象的异样解决类
- 调用ringBuffer.addGatingSequences,将消费者的Sequence传给ringBuffer
- 启动独立线程,用来执行生产事件的业务逻辑
- 实践剖析曾经实现,接下来开始编码;
源码下载
- 本篇实战中的残缺源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blo...:
名称 | 链接 | 备注 |
---|---|---|
我的项目主页 | https://github.com/zq2599/blo... | 该我的项目在GitHub上的主页 |
git仓库地址(https) | https://github.com/zq2599/blo... | 该我的项目源码的仓库地址,https协定 |
git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该我的项目源码的仓库地址,ssh协定 |
- 这个git我的项目中有多个文件夹,本次实战的源码在<font color="blue">disruptor-tutorials</font>文件夹下,如下图红框所示:
- <font color="blue">disruptor-tutorials</font>是个父工程,外面有多个module,本篇实战的module是<font color="red">low-level-operate</font>,如下图红框所示:
开发
- 进入编码阶段,明天的工作是挑战以下三个场景:
- 100个事件,单个消费者生产;
- 100个事件,三个消费者,每个都单独生产这个100个事件;
- 100个事件,三个消费者独特生产这个100个事件;
- 咱们先把工程建好,而后编写公共代码,例如事件定义、事件工厂等,最初才是每个场景的开发;
- 在父工程<font color="blue">disruptor-tutorials</font>新增名为<font color="red">low-level-operate</font>的module,其build.gradle如下:
plugins { id 'org.springframework.boot'}dependencies { implementation 'org.projectlombok:lombok' implementation 'org.springframework.boot:spring-boot-starter' implementation 'org.springframework.boot:spring-boot-starter-web' implementation 'com.lmax:disruptor' testImplementation('org.springframework.boot:spring-boot-starter-test')}
- 而后是springboot启动类:
package com.bolingcavalry;import org.springframework.boot.SpringApplication;import org.springframework.boot.autoconfigure.SpringBootApplication;@SpringBootApplicationpublic class LowLevelOperateApplication { public static void main(String[] args) { SpringApplication.run(LowLevelOperateApplication.class, args); }}
- 事件类,这是事件的定义:
package com.bolingcavalry.service;import lombok.Data;import lombok.NoArgsConstructor;import lombok.ToString;@Data@ToString@NoArgsConstructorpublic class StringEvent { private String value;}
- 事件工厂,定义如何在内存中创立事件对象:
package com.bolingcavalry.service;import com.lmax.disruptor.EventFactory;public class StringEventFactory implements EventFactory<StringEvent> { @Override public StringEvent newInstance() { return new StringEvent(); }}
- 事件生产类,定义如何将业务逻辑的事件转为disruptor事件公布到环形队列,用于生产:
package com.bolingcavalry.service;import com.lmax.disruptor.RingBuffer;public class StringEventProducer { // 存储数据的环形队列 private final RingBuffer<StringEvent> ringBuffer; public StringEventProducer(RingBuffer<StringEvent> ringBuffer) { this.ringBuffer = ringBuffer; } public void onData(String content) { // ringBuffer是个队列,其next办法返回的是下最初一条记录之后的地位,这是个可用地位 long sequence = ringBuffer.next(); try { // sequence地位取出的事件是空事件 StringEvent stringEvent = ringBuffer.get(sequence); // 空事件增加业务信息 stringEvent.setValue(content); } finally { // 公布 ringBuffer.publish(sequence); } }}
- 事件处理类,收到事件后具体的业务解决逻辑:
package com.bolingcavalry.service;import com.lmax.disruptor.EventHandler;import lombok.Setter;import lombok.extern.slf4j.Slf4j;import java.util.function.Consumer;@Slf4jpublic class StringEventHandler implements EventHandler<StringEvent> { public StringEventHandler(Consumer<?> consumer) { this.consumer = consumer; } // 内部能够传入Consumer实现类,每解决一条音讯的时候,consumer的accept办法就会被执行一次 private Consumer<?> consumer; @Override public void onEvent(StringEvent event, long sequence, boolean endOfBatch) throws Exception { log.info("sequence [{}], endOfBatch [{}], event : {}", sequence, endOfBatch, event); // 这里延时100ms,模仿生产事件的逻辑的耗时 Thread.sleep(100); // 如果内部传入了consumer,就要执行一次accept办法 if (null!=consumer) { consumer.accept(null); } }}
- 定义一个接口,内部通过调用接口的办法来生产音讯,再放几个常量在外面前面会用到:
package com.bolingcavalry.service;public interface LowLevelOperateService { /** * 消费者数量 */ int CONSUMER_NUM = 3; /** * 环形缓冲区大小 */ int BUFFER_SIZE = 16; /** * 公布一个事件 * @param value * @return */ void publish(String value); /** * 返回曾经解决的工作总数 * @return */ long eventCount();}
- 以上就是公共代码了,接下来一一实现之前布局的三个场景;
100个事件,单个消费者生产
- 这是最简略的性能了,实现公布音讯和单个消费者生产的性能,代码如下,有几处要留神的中央稍后提到:
package com.bolingcavalry.service.impl;import com.bolingcavalry.service.*;import com.lmax.disruptor.BatchEventProcessor;import com.lmax.disruptor.RingBuffer;import com.lmax.disruptor.SequenceBarrier;import lombok.extern.slf4j.Slf4j;import org.springframework.stereotype.Service;import javax.annotation.PostConstruct;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.atomic.AtomicLong;import java.util.function.Consumer;@Service("oneConsumer")@Slf4jpublic class OneConsumerServiceImpl implements LowLevelOperateService { private RingBuffer<StringEvent> ringBuffer; private StringEventProducer producer; /** * 统计音讯总数 */ private final AtomicLong eventCount = new AtomicLong(); private ExecutorService executors; @PostConstruct private void init() { // 筹备一个匿名类,传给disruptor的事件处理类, // 这样每次处理事件时,都会将曾经处理事件的总数打印进去 Consumer<?> eventCountPrinter = new Consumer<Object>() { @Override public void accept(Object o) { long count = eventCount.incrementAndGet(); log.info("receive [{}] event", count); } }; // 创立环形队列实例 ringBuffer = RingBuffer.createSingleProducer(new StringEventFactory(), BUFFER_SIZE); // 筹备线程池 executors = Executors.newFixedThreadPool(1); //创立SequenceBarrier SequenceBarrier sequenceBarrier = ringBuffer.newBarrier(); // 创立事件处理的工作类,外面执行StringEventHandler处理事件 BatchEventProcessor<StringEvent> batchEventProcessor = new BatchEventProcessor<>( ringBuffer, sequenceBarrier, new StringEventHandler(eventCountPrinter)); // 将消费者的sequence传给环形队列 ringBuffer.addGatingSequences(batchEventProcessor.getSequence()); // 在一个独立线程中取事件并生产 executors.submit(batchEventProcessor); // 生产者 producer = new StringEventProducer(ringBuffer); } @Override public void publish(String value) { producer.onData(value); } @Override public long eventCount() { return eventCount.get(); }}
- 上述代码有以下几处须要留神:
- 本人创立环形队列RingBuffer实例
- 本人筹备线程池,外面的线程用来获取和生产音讯
- 本人入手创立BatchEventProcessor实例,并把事件处理类传入
- 通过ringBuffer创立sequenceBarrier,传给BatchEventProcessor实例应用
- 将BatchEventProcessor的sequence传给ringBuffer,确保ringBuffer的生产和生产不会呈现凌乱
- 启动线程池,意味着BatchEventProcessor实例在一个独立线程中一直的从ringBuffer中获取事件并生产;
- 为了验证上述代码是否失常工作,我这里写了个单元测试类,如下所示,逻辑很简略,调用OneConsumerServiceImpl.publish办法一百次,产生一百个事件,再查看OneConsumerServiceImpl记录的生产事件总数是不是等于一百:
package com.bolingcavalry.service.impl;import com.bolingcavalry.service.LowLevelOperateService;import lombok.extern.slf4j.Slf4j;import org.junit.Test;import org.junit.runner.RunWith;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.beans.factory.annotation.Qualifier;import org.springframework.boot.test.context.SpringBootTest;import org.springframework.test.context.junit4.SpringRunner;import static org.junit.Assert.assertEquals;@RunWith(SpringRunner.class)@SpringBootTest@Slf4jpublic class LowLeverOperateServiceImplTest { @Autowired @Qualifier("oneConsumer") LowLevelOperateService oneConsumer; private static final int EVENT_COUNT = 100; private void testLowLevelOperateService(LowLevelOperateService service, int eventCount, int expectEventCount) throws InterruptedException { for(int i=0;i<eventCount;i++) { log.info("publich {}", i); service.publish(String.valueOf(i)); } // 异步生产,因而须要延时期待 Thread.sleep(10000); // 生产的事件总数应该等于公布的事件数 assertEquals(expectEventCount, service.eventCount()); } @Test public void testOneConsumer() throws InterruptedException { log.info("start testOneConsumerService"); testLowLevelOperateService(oneConsumer, EVENT_COUNT, EVENT_COUNT); }
- 留神,如果您是间接在IDEA上点击图标来执行单元测试,记得勾选下图红框中选项,否则可能呈现编译失败:
- 执行上述单元测试类,后果如下图所示,音讯的生产和生产都合乎预期,并且生产逻辑是在独立线程中执行的:
- 持续挑战下一个场景;
100个事件,三个消费者,每个都单独生产这个100个事件
- 这个场景在kafka中也有,就是三个消费者的group不同,这样每一条音讯,这两个消费者各自生产一次;
- 因而,100个事件,3个消费者每人都会独立生产这100个事件,一共生产300次;
- 代码如下,有几处要留神的中央稍后提到:
package com.bolingcavalry.service.impl;import com.bolingcavalry.service.*;import com.lmax.disruptor.BatchEventProcessor;import com.lmax.disruptor.RingBuffer;import com.lmax.disruptor.SequenceBarrier;import lombok.extern.slf4j.Slf4j;import org.springframework.stereotype.Service;import javax.annotation.PostConstruct;import java.util.concurrent.Executor;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.atomic.AtomicLong;import java.util.function.Consumer;@Service("multiConsumer")@Slf4jpublic class MultiConsumerServiceImpl implements LowLevelOperateService { private RingBuffer<StringEvent> ringBuffer; private StringEventProducer producer; /** * 统计音讯总数 */ private final AtomicLong eventCount = new AtomicLong(); /** * 生产一个BatchEventProcessor实例,并且启动独立线程开始获取和生产音讯 * @param executorService */ private void addProcessor(ExecutorService executorService) { // 筹备一个匿名类,传给disruptor的事件处理类, // 这样每次处理事件时,都会将曾经处理事件的总数打印进去 Consumer<?> eventCountPrinter = new Consumer<Object>() { @Override public void accept(Object o) { long count = eventCount.incrementAndGet(); log.info("receive [{}] event", count); } }; BatchEventProcessor<StringEvent> batchEventProcessor = new BatchEventProcessor<>( ringBuffer, ringBuffer.newBarrier(), new StringEventHandler(eventCountPrinter)); // 将以后消费者的sequence实例传给ringBuffer ringBuffer.addGatingSequences(batchEventProcessor.getSequence()); // 启动独立线程获取和生产事件 executorService.submit(batchEventProcessor); } @PostConstruct private void init() { ringBuffer = RingBuffer.createSingleProducer(new StringEventFactory(), BUFFER_SIZE); ExecutorService executorService = Executors.newFixedThreadPool(CONSUMER_NUM); // 创立多个消费者,并在独立线程中获取和生产事件 for (int i=0;i<CONSUMER_NUM;i++) { addProcessor(executorService); } // 生产者 producer = new StringEventProducer(ringBuffer); } @Override public void publish(String value) { producer.onData(value); } @Override public long eventCount() { return eventCount.get(); }}
- 上述代码和后面的OneConsumerServiceImpl相比差异不大,次要是创立了多个BatchEventProcessor实例,而后别离在线程池中提交;
- 验证办法仍旧是单元测试,在方才的LowLeverOperateServiceImplTest.java中减少代码即可,留神testLowLevelOperateService的第三个参数是<font color="blue">EVENT_COUNT * LowLevelOperateService.CONSUMER_NUM</font>,示意预期的被生产音讯数为<font color="red">300</font>:
@Autowired @Qualifier("multiConsumer") LowLevelOperateService multiConsumer; @Test public void testMultiConsumer() throws InterruptedException { log.info("start testMultiConsumer"); testLowLevelOperateService(multiConsumer, EVENT_COUNT, EVENT_COUNT * LowLevelOperateService.CONSUMER_NUM); }
- 执行单元测试,如下图所示,一共生产了300个事件,并且三个消费者在不动线程:
100个事件,三个消费者独特生产这个100个事件
- 本篇的最初一个实战是公布100个事件,而后让三个消费者独特生产100个(例如A生产33个,B生产33个,C生产34个);
- 后面用到的BatchEventProcessor是用来独立生产的,不适宜多个消费者独特生产,这种多个生产独特生产的场景须要借助WorkerPool来实现,这个名字还是很形象的:一个池子外面有很多个工作者,把工作放入这个池子,工作者们每人解决一部分,大家合力将工作实现;
- 传入WorkerPool的消费者须要实现WorkHandler接口,于是新增一个实现类:
package com.bolingcavalry.service;import com.lmax.disruptor.WorkHandler;import lombok.extern.slf4j.Slf4j;import java.util.function.Consumer;@Slf4jpublic class StringWorkHandler implements WorkHandler<StringEvent> { public StringWorkHandler(Consumer<?> consumer) { this.consumer = consumer; } // 内部能够传入Consumer实现类,每解决一条音讯的时候,consumer的accept办法就会被执行一次 private Consumer<?> consumer; @Override public void onEvent(StringEvent event) throws Exception { log.info("work handler event : {}", event); // 这里延时100ms,模仿生产事件的逻辑的耗时 Thread.sleep(100); // 如果内部传入了consumer,就要执行一次accept办法 if (null!=consumer) { consumer.accept(null); } }}
- 新增服务类,实现独特生产的逻辑,有几处要留神的中央稍后会提到:
package com.bolingcavalry.service.impl;import com.bolingcavalry.service.*;import com.lmax.disruptor.*;import lombok.extern.slf4j.Slf4j;import org.springframework.stereotype.Service;import javax.annotation.PostConstruct;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.atomic.AtomicLong;import java.util.function.Consumer;@Service("workerPoolConsumer")@Slf4jpublic class WorkerPoolConsumerServiceImpl implements LowLevelOperateService { private RingBuffer<StringEvent> ringBuffer; private StringEventProducer producer; /** * 统计音讯总数 */ private final AtomicLong eventCount = new AtomicLong(); @PostConstruct private void init() { ringBuffer = RingBuffer.createSingleProducer(new StringEventFactory(), BUFFER_SIZE); ExecutorService executorService = Executors.newFixedThreadPool(CONSUMER_NUM); StringWorkHandler[] handlers = new StringWorkHandler[CONSUMER_NUM]; // 创立多个StringWorkHandler实例,放入一个数组中 for (int i=0;i < CONSUMER_NUM;i++) { handlers[i] = new StringWorkHandler(o -> { long count = eventCount.incrementAndGet(); log.info("receive [{}] event", count); }); } // 创立WorkerPool实例,将StringWorkHandler实例的数组传进去,代表独特消费者的数量 WorkerPool<StringEvent> workerPool = new WorkerPool<>(ringBuffer, ringBuffer.newBarrier(), new IgnoreExceptionHandler(), handlers); // 这一句很重要,去掉就会呈现反复生产同一个事件的问题 ringBuffer.addGatingSequences(workerPool.getWorkerSequences()); workerPool.start(executorService); // 生产者 producer = new StringEventProducer(ringBuffer); } @Override public void publish(String value) { producer.onData(value); } @Override public long eventCount() { return eventCount.get(); }}
- 上述代码中,要留神的有以下两处:
- StringWorkHandler数组传入给WorkerPool后,每个StringWorkHandler实例都放入一个新的WorkProcessor实例,WorkProcessor实现了Runnable接口,在执行<font color="blue">workerPool.start</font>时,会将WorkProcessor提交到线程池中;
- 和后面的独立生产相比,独特生产最大的特点在于只调用了一次<font color="blue">ringBuffer.addGatingSequences</font>办法,也就是说三个消费者共用一个sequence实例;
- 验证办法仍旧是单元测试,在方才的LowLeverOperateServiceImplTest.java中减少代码即可,留神testWorkerPoolConsumer的第三个参数是<font color="blue">EVENT_COUNT</font>,示意预期的被生产音讯数为<font color="red">100</font>:
@Autowired @Qualifier("workerPoolConsumer") LowLevelOperateService workerPoolConsumer; @Test public void testWorkerPoolConsumer() throws InterruptedException { log.info("start testWorkerPoolConsumer"); testLowLevelOperateService(workerPoolConsumer, EVENT_COUNT, EVENT_COUNT); }
- 执行单元测试如下图所示,三个消费者一共生产100个事件,且三个消费者在不同线程:
- 至此,咱们在不必Disruptor类的前提下实现了三种常见场景的音讯生产生产,置信您对Disruptor的底层实现也有了粗浅意识,今后不论是应用还是优化Disruptor,肯定能够更加得心应手;
你不孤独,欣宸原创一路相伴
- Java系列
- Spring系列
- Docker系列
- kubernetes系列
- 数据库+中间件系列
- DevOps系列
欢送关注公众号:程序员欣宸
微信搜寻「程序员欣宸」,我是欣宸,期待与您一起畅游Java世界...
https://github.com/zq2599/blog_demos