# -*- coding:utf-8 -*-from PIL import Image, ImageEnhanceimport numpy as npimport randomimport cv2def randomColor(image):    """    对图像进行色彩抖动    :param image: PIL的图像image    :return: 有色彩色差的图像image    """    image = Image.fromarray(np.uint8(image))    random_factor = np.random.randint(0, 21) / 10.  # 随机因子    color_image = ImageEnhance.Color(image).enhance(random_factor)  # 调整图像的饱和度    random_factor = np.random.randint(10, 21) / 10.  # 随机因子    brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor)  # 调整图像的亮度    random_factor = np.random.randint(10, 21) / 10.  # 随机因1子    contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor)  # 调整图像对比度    random_factor = np.random.randint(0, 21) / 10.  # 随机因子    sharp_image = ImageEnhance.Sharpness(contrast_image).enhance(random_factor)  # 调整图像锐度    final = np.asarray(sharp_image)     return finaldef randomGaussian(img, mean=0.2, sigma=0.5):    """    对图像进行高斯噪声解决    :param image:    :return:    """    def gaussianNoisy(im, mean=0.2, sigma=0.5):        """        对图像做高斯乐音解决        :param im: 单通道图像        :param mean: 偏移量        :param sigma: 标准差        :return:        """        for _i in range(len(im)):            im[_i] += random.gauss(mean, sigma)        return im        img.flags.writeable = True  # 将数组改为读写模式    width, height = img.shape[:2]    img_r = gaussianNoisy(img[:, :, 0].flatten(), mean, sigma)    img_g = gaussianNoisy(img[:, :, 1].flatten(), mean, sigma)    img_b = gaussianNoisy(img[:, :, 2].flatten(), mean, sigma)    img[:, :, 0] = img_r.reshape([width, height])    img[:, :, 1] = img_g.reshape([width, height])    img[:, :, 2] = img_b.reshape([width, height])    return img# 均值滤波def ranndom_blur(img, ksize=(3, 3)):    img_blur = cv2.blur(src=img, ksize=ksize)    return img_blurif __name__ == '__main__':           pic = cv2.imread('./test.jpg')      a = randomColor(pic)    cv2.imwrite('randomColor.jpg', a)       b = randomGaussian(pic)    cv2.imwrite('randomGaussian.jpg', b)    c = ranndom_blur(pic)    cv2.imwrite('ranndom_blur.jpg', c)