规范库规定,分配器最顶层在 《...\memory》 头文件下

new_allocator

new_allocator 的 allocate 间接调用的 ::operator new ,deallocate 间接调用 ::operator delete

malloc_allocator

malloc_allocator 的 allocate 间接调用的 malloc,deallocate 间接调用 free

array_allocator

tr1 (Technical Report 1) 不是正式的库只是一个草案,作为C++ 2003规范的附加库被大多数编译器厂商所反对,它是个过渡性质的库,其实现将会作为C++11规范的一部分。到 C++2011 时,其局部内容被正式蕴含到规范库,在应用形式上依然保留 std::tr1,例如 std::tr1::array 可用 std::array 代替。

在构造函数中须要传入一个指针,这个指针能够指向动态调配的数组,也能够指向动态分配的数组,所以说内存调配不是在array_allocator中进行的,array_allocator 只是对调配好的内存进行治理(因而 deallocate 什么都没做)。

array_allocator 并不会"回收"(指从新被array_allocator治理)已给出的内存空间,因而很少被应用

动态内存调配的形式应用

动态内存调配的形式应用

debug_allocator

包裹另一个分配器,应用至多一个元素大小的空间,用于记录整个区块大小(子元素数量)(是不是相等于另一种 cookie? 但 allocator 的主要用途是缩小 cookie,因而很少被应用)

pool_allocator

G2.9 容器应用的分配器不是 std::allocator 而是 std::alloc (毛病,只申请不偿还)

G4.9 中的进化

G4.9 规范库中有许多 extented allocators, 其中 __pool_alloc 就是 G2.9 的化身

#include <iostream>#include <cstddef>#include <memory>                 //內含 std::allocator#include <ext\pool_allocator.h>   //欲应用 std::allocator 以外的 allocator, 就得自行 #include <ext/...>#include <ext\array_allocator.h>#include <ext\mt_allocator.h>#include <ext\debug_allocator.h>#include <ext\bitmap_allocator.h>#include <ext\malloc_allocator.h>#include <ext\throw_allocator.h>#include <ext\new_allocator.h>   //這其實已被 <memory> included, 它就是 std:allocator 的 base class#include <iostream>#include <list>#include <deque>#include <vector>using namespace std;template<typename Alloc>void cookie_test(Alloc alloc, size_t n){    typename Alloc::value_type *p1, *p2, *p3;  //需有 typename    p1 = alloc.allocate(n);                   //allocate() and deallocate() 是 non-static, 需以 object 呼叫之.    p2 = alloc.allocate(n);    p3 = alloc.allocate(n);    cout << "p1= " << p1 << '\t' << "p2= " << p2 << '\t' << "p3= " << p3 << '\n';    alloc.deallocate(p1,sizeof(typename Alloc::value_type)); //需有 typename    alloc.deallocate(p2,sizeof(typename Alloc::value_type)); //有些 allocator 對於 2nd argument 的值無所謂    alloc.deallocate(p3,sizeof(typename Alloc::value_type));}int main(){    //從語法上試用各式各樣的 allocators    cout << sizeof(std::allocator<int>) << endl;              //1    cout << sizeof(__gnu_cxx::new_allocator<int>) << endl;    //1.    //觀察 STL source 可知: new_allocator 是 std::allocator 的 base    //我們無法改變 std::allocator 的 base class, 那該如何应用其余的 GNU allocators ?    //是否要寫個 custom_allocator (像下面) 並為它加上我想要的 base (例如 __pool_alloc) ?    //不,不用,就间接应用, 但需自行 #include <ext/...>    cout << sizeof(__gnu_cxx::malloc_allocator<int>) << endl;   //1. 大小 1者其實為 0, fields 都是 static.    cout << sizeof(__gnu_cxx::__pool_alloc<int>) << endl;       //1    cout << sizeof(__gnu_cxx::__mt_alloc<int>) << endl;         //1    cout << sizeof(__gnu_cxx::bitmap_allocator<int>) << endl;   //1    cout << sizeof(__gnu_cxx::array_allocator<int>) << endl;    //8 ==> 因為它有一個 ptr 指向 array 和一個 size_t 示意耗费到 array 哪兒    cout << sizeof(__gnu_cxx::debug_allocator<std::allocator<double>>) << endl;    //8    //!    cout << sizeof(__gnu_cxx::throw_allocator<int>) << endl;                //只有 throw_allocator_base, throw_allocator_random, throw_allocator_limit, 沒有 throw_allocator !!    cout << endl;    //搭配容器    list <int, __gnu_cxx::malloc_allocator<int>> list_malloc;    deque <int, __gnu_cxx::debug_allocator<std::allocator<int>>> deque_debug;    vector<int, __gnu_cxx::__pool_alloc<int>> vector_pool;    //! vector<int, __pool_alloc<int>> vector_pool;         //如果沒加上 namespace : [Error] '__pool_alloc' was not declared in this scope    cookie_test(std::allocator<int>(), 1);                  //相距 10h (示意帶 cookie)    cookie_test(__gnu_cxx::malloc_allocator<int>(), 1);     //相距 10h (示意帶 cookie)    cookie_test(__gnu_cxx::__pool_alloc<int>(), 1);        //相距 08h (示意不帶 cookie)    //以下將 int 改為 double 結果不變,象征上述 ints 間隔 8 (而非 4) 乃是因為 alignment.    cookie_test(std::allocator<double>(), 1);               //相距 10h (示意帶 cookie)    cookie_test(__gnu_cxx::malloc_allocator<double>(), 1);  //相距 10h (示意帶 cookie)    cookie_test(__gnu_cxx::__pool_alloc<double>(), 1);        //相距 08h (示意不帶 cookie)    cout << endl;    try {        //示範应用 array_allocator: 須先 new an array, 將其 ptr 設給 array_allocator, 最後還要 delete array        std::tr1::array<double,100>* arrayTR1 = new std::tr1::array<double,100>;                    //应用 tr1::array        cookie_test(__gnu_cxx::array_allocator<double, std::tr1::array<double,100>>(arrayTR1), 1);  //相距 08h (示意不帶 cookie)        delete arrayTR1;        array<double,100>* arraySTD = new array<double,100>;                              //应用 std::array        cookie_test(__gnu_cxx::array_allocator<double, array<double,100>>(arraySTD), 1);  //相距 08h (示意不帶 cookie)        delete arraySTD;        std::tr1::array<double,1>* p = new std::tr1::array<double,1>;    //為搭配下一行 "default 2nd argument 是 std::tr1::array<T,1>" (見 source), 我們须要做一個來.        cookie_test(__gnu_cxx::array_allocator<double>(p), 1);          //未指明 2nd argument, 所以应用 default, 即 std::tr1::array<T,1>                                                                        //bad allocation! 因為 cookie_test() 需 3 doubles 而                                                                        // 本處所用之 array_allocator 卻只能提供 1 double。        delete p;    }    catch(...)    {        cout << "bad allocation! \n";    }    return 0;}

输入:

11111188p1= 0xe91630    p2= 0xe98328    p3= 0xe98338p1= 0xe91630    p2= 0xe98328    p3= 0xe98338p1= 0xe98368    p2= 0xe98370    p3= 0xe98378p1= 0xe91630    p2= 0xe984b0    p3= 0xe984c0p1= 0xe91630    p2= 0xe984b0    p3= 0xe984c0p1= 0xe98380    p2= 0xe98388    p3= 0xe98390p1= 0xe984b0    p2= 0xe984b8    p3= 0xe984c0p1= 0xe984b0    p2= 0xe984b8    p3= 0xe984c0bad allocation! 

bitmap_allocator

<.../ext/bitmap_allocator.h> 文件中template<typename _Tp>class bitmap_allocator : private free_list {  // 此处学习可不思考 free_list    ......public:    pointer allocate(size_type __n) {        if (__n > this->max_size())            std::__throw_bad_alloc();        if (__builtin_expect(__b == 1, true))              return this->_M_allocate_single_object();  // 一次仅供给一个给客户!(因为次要被容器所应用,而容器一次申请只一个对象)        else {                                         // 当间接应用 bitmap_allocator 时可能会走向这里            const size_type __b = __n * sizeof(value_type);            return reinterpret_cast<pointer>(::operator new(__b));        }    }        void deallocate(pointer __p, size_type __n) throw() {        if (__builtin_expect(__p != 0, true)) {            if (__builtin_expect(__n == 1, true))                this->_M_deallocate_single_object(__p);            else                ::operator delete(__p);        }    }};

对于 blocks,super-blocks, bitmap, mini-vector

  • block, 客户申请的一个节点,最小 8 字节,大小 8 的倍数增长(8, 16, 32 ...)
  • super-blocks, 由 use-count + bitmap + blocks 组成[一次申请一大块,缩小 cookie 应用,每次 2 倍增长]
  • use-count, 已调配出的 blocks 数量
  • bitmap, unsigned int 为单位(32bit), 反方向标记对应 blocks 是否闲暇 (1 闲暇, 0 已调配进来)
  • __mini_vector, 一个小的 vector 实现, 治理应用中的 super-blocks (每次 2 倍增长)

第 1 次内存调配

1. use-count + 1 = 0 + 1 = 12. bitmap 批改为 0xFFFFFFFF FFFFFFFE

第 2 次内存调配

1. use-count + 1 = 1 + 1 = 22. bitmap 批改为 0xFFFFFFFF FFFFFFFC

第 63 次内存调配

1. use-count + 1 = 62 + 1 = 632. bitmap 批改为 0x10000000 00000000

第 1 次内存偿还

1. use-count - 1 = 63 - 1 = 622. bitmap 批改为 0x10100000 00000000

1st super-block 用完,启动 2nd super-block

2nd super-block 用完,启动 3nd super-block

1st super-block 全回收

问题1:

如果 1st super-block 回收 2 blocks, 而尚未全回收,接下来调配 2 blocks, bitmap_allocator 会从 #0 super-block 取出亦或从 #2 super-block 取出?(假如 #0, #1, #2 block-size 一样大)
答:后者(其实都能够)

问题2:

如果接下来把 #2 super-block 用光,而后调配 2 blocks, bitmap_allocator 会从 #0 super-block 取出亦或新建一个 #3 super-block 并从中取出(假如 #0, #1, #2 block-size 一样大)?
答:前者

2nd super-block 全回收

3rd super-block 全回收

问题:接下来调配 1 block, 如何解决?

此时 _S_mem_blocks 为空而 _S_free_list 有三个 super-blicks, 于是取一个放进 _S_mem_blocks, 而后遵循先前法令实现调配

#include <iostream>#include <ext\bitmap_allocator.h>    //欲应用 std::allocator 以外的 allocator, 就得自行 #include <ext/...>using namespace std;int main(){    cout << "\ntest_bitmap_allocators().......\n";    __gnu_cxx::bitmap_allocator<double> alloc;   //造成一個 static __mini_vector<pair>, size=0    __gnu_cxx::bitmap_allocator<double>::value_type* p[1000];    // __gnu_cxx::bitmap_allocator<double>::value_type* ptr;    for (int i=0; i<448; ++i) {         p[i] = alloc.allocate(1);         cout << "p[" << i << "]" << p[i] << endl;    }}

G4.9 分配器的应用

pool_allocator 和 bitmap_allocator 是最精美的分配器,不仅缩小了 cookies 的应用,同时更有速度劣势(bitmap_allocator 还可归还os内存)
#include <list>#include <stdexcept>#include <string>#include <cstdlib>     // abort#include <cstdio>      // snprintf()#include <algorithm>   // find#include <iostream>#include <ctime>#include <cstddef>#include <memory>      // 内含 std::allocator// 欲应用 std::allocator 以外的 allocator, 得自行 #include <ext\...>#include <ext\array_allocator.h>#include <ext\mt_allocator.h>#include <ext\debug_allocator.h>#include <ext\pool_allocator.h>#include <ext\bitmap_allocator.h>#include <ext\malloc_allocator.h>#include <ext\new_allocator.h>using namespace std;void test_list_with_special_allocator(int choice, long value){    cout << "test_list_with_special_allocator() ......"  << endl;    cout << "choice: " << choice << " value: " << value << endl;    list<string, allocator<string>> c1;    list<string, __gnu_cxx::malloc_allocator<string>> c2;    list<string, __gnu_cxx::new_allocator<string>> c3;    list<string, __gnu_cxx::__pool_alloc<string>> c4;    list<string, __gnu_cxx::__mt_alloc<string>> c5;    list<string, __gnu_cxx::bitmap_allocator<string>> c6;    char buf[10];    clock_t timeStart = clock();    for (int i=0; i<value; ++i)    {        try {            snprintf(buf, 10, "%d", i);            switch (choice)            {            case 1: c1.push_back(string(buf));                        break;            case 2: c2.push_back(string(buf));                    break;            case 3: c3.push_back(string(buf));                    break;            case 4: c4.push_back(string(buf));                    break;            case 5: c5.push_back(string(buf));                    break;            case 6: c6.push_back(string(buf));                    break;            default:                break;            }        }        catch (exception &p) {            cout << "i= " << i << " " << p.what() << endl;            abort();        }    }    cout << "a lot of push_back(), milli-seconds : " << (clock() - timeStart) << endl;}void test_all_allocator(){    int *p;    allocator<int> alloc1;    p = alloc1.allocate(1);    alloc1.deallocate(p, 1);    __gnu_cxx::malloc_allocator<int> alloc2;    p = alloc2.allocate(1);    alloc2.deallocate(p, 1);    __gnu_cxx::new_allocator<int> alloc3;    p = alloc3.allocate(1);    alloc3.deallocate(p, 1);    __gnu_cxx::__pool_alloc<int> alloc4;    p = alloc4.allocate(2);    alloc4.deallocate(p, 2);   __gnu_cxx::__mt_alloc<int> alloc5;   p = alloc5.allocate(1);   alloc5.deallocate(p, 1);   __gnu_cxx::bitmap_allocator<int> alloc6;   p = alloc6.allocate(3);   alloc6.deallocate(p, 3);}int main(){    test_list_with_special_allocator(1, 600000);    test_list_with_special_allocator(2, 600000);    test_list_with_special_allocator(3, 600000);    test_list_with_special_allocator(4, 600000);    test_list_with_special_allocator(5, 600000);    test_list_with_special_allocator(6, 600000);    return 0;}

输入:

test_list_with_special_allocator() ......choice: 1 value: 600000a lot of push_back(), milli-seconds : 105test_list_with_special_allocator() ......choice: 2 value: 600000a lot of push_back(), milli-seconds : 101test_list_with_special_allocator() ......choice: 3 value: 600000a lot of push_back(), milli-seconds : 107test_list_with_special_allocator() ......choice: 4 value: 600000a lot of push_back(), milli-seconds : 80test_list_with_special_allocator() ......choice: 5 value: 600000a lot of push_back(), milli-seconds : 85test_list_with_special_allocator() ......choice: 6 value: 600000a lot of push_back(), milli-seconds : 76