目录
- 一、增加依赖
- 二、Prometheus 装置与配置
- 三、Grafana 装置和配置
- 四、自定义监控指标
一、增加依赖
- Maven
pom.xml
<!-- 第一条必须加,否则会导致 Could not autowire. No beans of 'xxxx' type found 的谬误 --><dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId></dependency><dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-core</artifactId></dependency><dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-prometheus</artifactId></dependency>
- Gradle
build.gradle
implementation 'org.springframework.boot:spring-boot-starter-actuator'compile 'io.micrometer:micrometer-registry-prometheus'compile 'io.micrometer:micrometer-core'
- 关上 Prometheus 监控接口
application.properties
server.port=8088spring.application.name=springboot2-prometheusmanagement.endpoints.web.exposure.include=*management.metrics.tags.application=${spring.application.name}
能够间接运行程序,拜访http://localhost:8088/actuator/prometheus
能够看到上面的内容:
# HELP jvm_buffer_total_capacity_bytes An estimate of the total capacity of the buffers in this pool# TYPE jvm_buffer_total_capacity_bytes gaugejvm_buffer_total_capacity_bytes{id="direct",} 90112.0jvm_buffer_total_capacity_bytes{id="mapped",} 0.0# HELP tomcat_sessions_expired_sessions_total # TYPE tomcat_sessions_expired_sessions_total countertomcat_sessions_expired_sessions_total 0.0# HELP jvm_classes_unloaded_classes_total The total number of classes unloaded since the Java virtual machine has started execution# TYPE jvm_classes_unloaded_classes_total counterjvm_classes_unloaded_classes_total 1.0# HELP jvm_buffer_count_buffers An estimate of the number of buffers in the pool# TYPE jvm_buffer_count_buffers gaugejvm_buffer_count_buffers{id="direct",} 11.0jvm_buffer_count_buffers{id="mapped",} 0.0# HELP system_cpu_usage The "recent cpu usage" for the whole system# TYPE system_cpu_usage gaugesystem_cpu_usage 0.0939447637893599# HELP jvm_gc_max_data_size_bytes Max size of old generation memory pool# TYPE jvm_gc_max_data_size_bytes gaugejvm_gc_max_data_size_bytes 2.841116672E9# 此处省略超多字...
二、Prometheus 装置与配置
应用 docker 运行 Prometheus(仅初始测试)
docker run --name prometheus -d -p 9090:9090 prom/prometheus:latest
写配置文件prometheus.yml
# my global configglobal: scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute. evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute. # scrape_timeout is set to the global default (10s).# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.rule_files: # - "first_rules.yml" # - "second_rules.yml"# A scrape configuration containing exactly one endpoint to scrape:# Here it's Prometheus itself.scrape_configs: # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config. - job_name: 'prometheus' # metrics_path defaults to '/metrics' # scheme defaults to 'http'. static_configs: - targets: ['localhost:9090'] # demo job - job_name: 'springboot-actuator-prometheus-test' # job name metrics_path: '/actuator/prometheus' # 指标获取门路 scrape_interval: 5s # 距离 basic_auth: # Spring Security basic auth username: 'actuator' password: 'actuator' static_configs: - targets: ['docker.for.mac.localhost:18080'] # 实例的地址,默认的协定是http (这里开始有问题,间接写 localhost 是拜访容器内的地址,而不是宿主机的。可通过在网页上方 status -> targets 查看对应的服务状况
运行 docker
docker run -d -p 9090:9090 -v $(pwd)/prometheus.yml:/etc/prometheus/prometheus.yml prom/prometheus --config.file=/etc/prometheus/prometheus.yml
拜访 http://localhost:9090
,可看到如下界面
- 点击
Insert metric at cursor
,即可抉择监控指标;点击Graph
,即可让指标以图表形式展现;点击Execute
按钮,即可看到指标图
三、Grafana 装置和配置
1、启动
$ docker run -d --name=grafana -p 3000:3000 grafana/grafana
2、登录
拜访 http://localhost:3000/login
,初始账号/明码为:admin/admin
3、配置数据源
- 点击左侧齿轮
Configuration
中Add Data Source
,会看到如下界面:
- 这里咱们抉择Prometheus 当做数据源,这里咱们就配置一下Prometheus 的拜访地址,点击
Save & Test
4、创立监控 Dashboard
- 点击导航栏上的
+
按钮,并点击Dashboard,将会看到相似如下的界面
- 点击
+ Add new panel
四、自定义监控指标
1、创立 Prometheus 监控治理类PrometheusCustomMonitor
import io.micrometer.core.instrument.Counter;import io.micrometer.core.instrument.DistributionSummary;import io.micrometer.core.instrument.MeterRegistry;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Component;import javax.annotation.PostConstruct;import java.util.concurrent.atomic.AtomicInteger;@Componentpublic class PrometheusCustomMonitor { private Counter requestErrorCount; private Counter orderCount; private DistributionSummary amountSum; private AtomicInteger failCaseNum; private final MeterRegistry registry; @Autowired public PrometheusCustomMonitor(MeterRegistry registry) { this.registry = registry; } @PostConstruct private void init() { requestErrorCount = registry.counter("requests_error_total", "status", "error"); orderCount = registry.counter("order_request_count", "order", "test-svc"); amountSum = registry.summary("order_amount_sum", "orderAmount", "test-svc"); failCaseNum = registry.gauge("fail_case_num", new AtomicInteger(0)); } public Counter getRequestErrorCount() { return requestErrorCount; } public Counter getOrderCount() { return orderCount; } public DistributionSummary getAmountSum() { return amountSum; } public AtomicInteger getFailCaseNum() { return failCaseNum; }}
2、新增/order
接口
当 flag="1"
时,抛异样,模仿下单失败状况。在接口中统计order_request_count
和order_amount_sum
import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.RequestParam;import org.springframework.web.bind.annotation.RestController;import javax.annotation.Resource;import java.util.Random;@RestControllerpublic class TestController { @Resource private PrometheusCustomMonitor monitor; @RequestMapping("/order") public String order(@RequestParam(defaultValue = "0") String flag) throws Exception { // 统计下单次数 monitor.getOrderCount().increment(); if ("1".equals(flag)) { throw new Exception("出错啦"); } Random random = new Random(); int amount = random.nextInt(100); // 统计金额 monitor.getAmountSum().record(amount); monitor.getFailCaseNum().set(amount); return "下单胜利, 金额: " + amount; }}
3、新增全局异样处理器GlobalExceptionHandler
统计下单失败次数requests_error_total
import org.springframework.web.bind.annotation.ControllerAdvice;import org.springframework.web.bind.annotation.ExceptionHandler;import org.springframework.web.bind.annotation.ResponseBody;import javax.annotation.Resource;@ControllerAdvicepublic class GlobalExceptionHandler { @Resource private PrometheusCustomMonitor monitor; @ResponseBody @ExceptionHandler(value = Exception.class) public String handle(Exception e) { monitor.getRequestErrorCount().increment(); return "error, message: " + e.getMessage(); }}
4、测试
启动我的项目,拜访http://localhost:8080/order
和http://localhost:8080/order?flag=1
模仿下单胜利和失败的状况,而后咱们拜访http://localhost:8080/actuator/prometheus
,能够看到咱们自定义指标曾经被 /prometheus
端点裸露进去
# HELP requests_error_total # TYPE requests_error_total counterrequests_error_total{application="springboot-actuator-prometheus-test",status="error",} 41.0# HELP order_request_count_total # TYPE order_request_count_total counterorder_request_count_total{application="springboot-actuator-prometheus-test",order="test-svc",} 94.0# HELP order_amount_sum # TYPE order_amount_sum summaryorder_amount_sum_count{application="springboot-actuator-prometheus-test",orderAmount="test-svc",} 53.0order_amount_sum_sum{application="springboot-actuator-prometheus-test",orderAmount="test-svc",} 2701.0
5、应用 Prometheus 监控
从新运行 docker
docker run -d -p 9090:9090 -v $(pwd)/prometheus.yml:/etc/prometheus/prometheus.yml prom/prometheus --config.file=/etc/prometheus/prometheus.yml
抉择对应指标后能够看到数据变动
6、应用 Grafana 展现
在 Dashboard 界面抉择对应的监控指标即可
参考资料:
Metric types | Prometheus
IntelliJ IDEA创立第一个Spring Boot我的项目\_Study Notes-CSDN博客
Spring Boot 应用 Micrometer 集成 Prometheus 监控 Java 利用性能 【springboot 2.0】
Micrometer Application Monitoring【官网文档】
Spring Boot 微服务利用集成Prometheus + Grafana 实现监控告警 ★
Monitoring Java Spring Boot applications with Prometheus: Part 1 | by Arush Salil | Kubernauts 【放弃这个教程?】client java 不反对 springboot 2.x,最高反对 1.5
Spring Boot 参考指南(端点)\_风持续吹 - SegmentFault 思否