简介

应用Pandas的pivot办法能够将DF进行旋转变换,本文将会具体解说pivot的机密。

应用Pivot

pivot用来重组DF,应用指定的index,columns和values来对现有的DF进行重构。

看一个Pivot的例子:

通过pivot变动,新的DF应用foo中的值作为index,应用bar的值作为columns,zoo作为对应的value。

再看一个工夫变动的例子:

In [1]: dfOut[1]:          date variable     value0  2000-01-03        A  0.4691121  2000-01-04        A -0.2828632  2000-01-05        A -1.5090593  2000-01-03        B -1.1356324  2000-01-04        B  1.2121125  2000-01-05        B -0.1732156  2000-01-03        C  0.1192097  2000-01-04        C -1.0442368  2000-01-05        C -0.8618499  2000-01-03        D -2.10456910 2000-01-04        D -0.49492911 2000-01-05        D  1.071804
In [3]: df.pivot(index='date', columns='variable', values='value')Out[3]: variable           A         B         C         Ddate                                              2000-01-03  0.469112 -1.135632  0.119209 -2.1045692000-01-04 -0.282863  1.212112 -1.044236 -0.4949292000-01-05 -1.509059 -0.173215 -0.861849  1.071804

如果残余的value,多于一列的话,每一列都会有相应的columns值:

In [4]: df['value2'] = df['value'] * 2In [5]: pivoted = df.pivot(index='date', columns='variable')In [6]: pivotedOut[6]:                value                                  value2                              variable           A         B         C         D         A         B         C         Ddate                                                                                      2000-01-03  0.469112 -1.135632  0.119209 -2.104569  0.938225 -2.271265  0.238417 -4.2091382000-01-04 -0.282863  1.212112 -1.044236 -0.494929 -0.565727  2.424224 -2.088472 -0.9898592000-01-05 -1.509059 -0.173215 -0.861849  1.071804 -3.018117 -0.346429 -1.723698  2.143608

通过抉择value2,能够失去相应的子集:

In [7]: pivoted['value2']Out[7]: variable           A         B         C         Ddate                                              2000-01-03  0.938225 -2.271265  0.238417 -4.2091382000-01-04 -0.565727  2.424224 -2.088472 -0.9898592000-01-05 -3.018117 -0.346429 -1.723698  2.143608

应用Stack

Stack是对DF进行转换,将列转换为新的外部的index。

下面咱们将列A,B转成了index。

unstack是stack的反向操作,是将最内层的index转换为对应的列。

举个具体的例子:

In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',   ...:                      'foo', 'foo', 'qux', 'qux'],   ...:                     ['one', 'two', 'one', 'two',   ...:                      'one', 'two', 'one', 'two']]))   ...: In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])In [11]: df2 = df[:4]In [12]: df2Out[12]:                      A         Bfirst second                    bar   one     0.721555 -0.706771      two    -1.039575  0.271860baz   one    -0.424972  0.567020      two     0.276232 -1.087401
In [13]: stacked = df2.stack()In [14]: stackedOut[14]: first  second   bar    one     A    0.721555               B   -0.706771       two     A   -1.039575               B    0.271860baz    one     A   -0.424972               B    0.567020       two     A    0.276232               B   -1.087401dtype: float64

默认状况下unstack是unstack最初一个index,咱们还能够指定特定的index值:

In [15]: stacked.unstack()Out[15]:                      A         Bfirst second                    bar   one     0.721555 -0.706771      two    -1.039575  0.271860baz   one    -0.424972  0.567020      two     0.276232 -1.087401In [16]: stacked.unstack(1)Out[16]: second        one       twofirst                      bar   A  0.721555 -1.039575      B -0.706771  0.271860baz   A -0.424972  0.276232      B  0.567020 -1.087401In [17]: stacked.unstack(0)Out[17]: first          bar       bazsecond                      one    A  0.721555 -0.424972       B -0.706771  0.567020two    A -1.039575  0.276232       B  0.271860 -1.087401

默认状况下stack只会stack一个level,还能够传入多个level:

In [23]: columns = pd.MultiIndex.from_tuples([   ....:     ('A', 'cat', 'long'), ('B', 'cat', 'long'),   ....:     ('A', 'dog', 'short'), ('B', 'dog', 'short')],   ....:     names=['exp', 'animal', 'hair_length']   ....: )   ....: In [24]: df = pd.DataFrame(np.random.randn(4, 4), columns=columns)In [25]: dfOut[25]: exp                 A         B         A         Banimal            cat       cat       dog       doghair_length      long      long     short     short0            1.075770 -0.109050  1.643563 -1.4693881            0.357021 -0.674600 -1.776904 -0.9689142           -1.294524  0.413738  0.276662 -0.4720353           -0.013960 -0.362543 -0.006154 -0.923061In [26]: df.stack(level=['animal', 'hair_length'])Out[26]: exp                          A         B  animal hair_length                    0 cat    long         1.075770 -0.109050  dog    short        1.643563 -1.4693881 cat    long         0.357021 -0.674600  dog    short       -1.776904 -0.9689142 cat    long        -1.294524  0.413738  dog    short        0.276662 -0.4720353 cat    long        -0.013960 -0.362543  dog    short       -0.006154 -0.923061

下面等价于:

In [27]: df.stack(level=[1, 2])

应用melt

melt指定特定的列作为标记变量,其余的列被转换为行的数据。并搁置在新的两个列:variable和value中。

下面例子中咱们指定了两列first和last,这两列是不变的,height和weight被变换成为行数据。

举个例子:

In [41]: cheese = pd.DataFrame({'first': ['John', 'Mary'],   ....:                        'last': ['Doe', 'Bo'],   ....:                        'height': [5.5, 6.0],   ....:                        'weight': [130, 150]})   ....: In [42]: cheeseOut[42]:   first last  height  weight0  John  Doe     5.5     1301  Mary   Bo     6.0     150In [43]: cheese.melt(id_vars=['first', 'last'])Out[43]:   first last variable  value0  John  Doe   height    5.51  Mary   Bo   height    6.02  John  Doe   weight  130.03  Mary   Bo   weight  150.0In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')Out[44]:   first last quantity  value0  John  Doe   height    5.51  Mary   Bo   height    6.02  John  Doe   weight  130.03  Mary   Bo   weight  150.0

应用Pivot tables

尽管Pivot能够进行DF的轴转置,Pandas还提供了 pivot_table() 在转置的同时能够进行数值的统计。

pivot_table() 接管上面的参数:

data: 一个df对象

values:一列或者多列待聚合的数据。

Index: index的分组对象

Columns: 列的分组对象

Aggfunc: 聚合的办法。

先创立一个df:

In [59]: import datetimeIn [60]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,   ....:                    'B': ['A', 'B', 'C'] * 8,   ....:                    'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,   ....:                    'D': np.random.randn(24),   ....:                    'E': np.random.randn(24),   ....:                    'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)]   ....:                    + [datetime.datetime(2013, i, 15) for i in range(1, 13)]})   ....: In [61]: dfOut[61]:         A  B    C         D         E          F0     one  A  foo  0.341734 -0.317441 2013-01-011     one  B  foo  0.959726 -1.236269 2013-02-012     two  C  foo -1.110336  0.896171 2013-03-013   three  A  bar -0.619976 -0.487602 2013-04-014     one  B  bar  0.149748 -0.082240 2013-05-01..    ... ..  ...       ...       ...        ...19  three  B  foo  0.690579 -2.213588 2013-08-1520    one  C  foo  0.995761  1.063327 2013-09-1521    one  A  bar  2.396780  1.266143 2013-10-1522    two  B  bar  0.014871  0.299368 2013-11-1523  three  C  bar  3.357427 -0.863838 2013-12-15[24 rows x 6 columns]

上面是几个聚合的例子:

In [62]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])Out[62]: C             bar       fooA     B                    one   A  1.120915 -0.514058      B -0.338421  0.002759      C -0.538846  0.699535three A -1.181568       NaN      B       NaN  0.433512      C  0.588783       NaNtwo   A       NaN  1.000985      B  0.158248       NaN      C       NaN  0.176180In [63]: pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum)Out[63]: A       one               three                 two          C       bar       foo       bar       foo       bar       fooB                                                            A  2.241830 -1.028115 -2.363137       NaN       NaN  2.001971B -0.676843  0.005518       NaN  0.867024  0.316495       NaNC -1.077692  1.399070  1.177566       NaN       NaN  0.352360In [64]: pd.pivot_table(df, values=['D', 'E'], index=['B'], columns=['A', 'C'],   ....:                aggfunc=np.sum)   ....: Out[64]:           D                                                           E                                                  A       one               three                 two                 one               three                 two          C       bar       foo       bar       foo       bar       foo       bar       foo       bar       foo       bar       fooB                                                                                                                        A  2.241830 -1.028115 -2.363137       NaN       NaN  2.001971  2.786113 -0.043211  1.922577       NaN       NaN  0.128491B -0.676843  0.005518       NaN  0.867024  0.316495       NaN  1.368280 -1.103384       NaN -2.128743 -0.194294       NaNC -1.077692  1.399070  1.177566       NaN       NaN  0.352360 -1.976883  1.495717 -0.263660       NaN       NaN  0.872482

增加margins=True会增加一个All列,示意对所有的列进行聚合:

In [69]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)Out[69]:                 D                             E                    C             bar       foo       All       bar       foo       AllA     B                                                            one   A  1.804346  1.210272  1.569879  0.179483  0.418374  0.858005      B  0.690376  1.353355  0.898998  1.083825  0.968138  1.101401      C  0.273641  0.418926  0.771139  1.689271  0.446140  1.422136three A  0.794212       NaN  0.794212  2.049040       NaN  2.049040      B       NaN  0.363548  0.363548       NaN  1.625237  1.625237      C  3.915454       NaN  3.915454  1.035215       NaN  1.035215two   A       NaN  0.442998  0.442998       NaN  0.447104  0.447104      B  0.202765       NaN  0.202765  0.560757       NaN  0.560757      C       NaN  1.819408  1.819408       NaN  0.650439  0.650439All      1.556686  0.952552  1.246608  1.250924  0.899904  1.059389

应用crosstab

Crosstab 用来统计表格中元素的呈现次数。

In [70]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'In [71]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)In [72]: b = np.array([one, one, two, one, two, one], dtype=object)In [73]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)In [74]: pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])Out[74]: b    one        two      c   dull shiny dull shinya                        bar    1     0    0     1foo    2     1    1     0

crosstab能够接管两个Series:

In [75]: df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4],   ....:                    'C': [1, 1, np.nan, 1, 1]})   ....: In [76]: dfOut[76]:    A  B    C0  1  3  1.01  2  3  1.02  2  4  NaN3  2  4  1.04  2  4  1.0In [77]: pd.crosstab(df['A'], df['B'])Out[77]: B  3  4A      1  1  02  1  3

还能够应用normalize来指定比例值:

In [82]: pd.crosstab(df['A'], df['B'], normalize=True)Out[82]: B    3    4A          1  0.2  0.02  0.2  0.6

还能够normalize行或者列:

In [83]: pd.crosstab(df['A'], df['B'], normalize='columns')Out[83]: B    3    4A          1  0.5  0.02  0.5  1.0

能够指定聚合办法:

In [84]: pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum)Out[84]: B    3    4A          1  1.0  NaN2  1.0  2.0

get_dummies

get_dummies能够将DF中的一列转换成为k列的0和1组合:

df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)})dfOut[9]:    data1 key0      0   b1      1   b2      2   a3      3   c4      4   a5      5   bpd.get_dummies(df['key'])Out[10]:    a  b  c0  0  1  01  0  1  02  1  0  03  0  0  14  1  0  05  0  1  0

get_dummies 和 cut 能够进行联合用来统计范畴内的元素:

In [95]: values = np.random.randn(10)In [96]: valuesOut[96]: array([ 0.4082, -1.0481, -0.0257, -0.9884,  0.0941,  1.2627,  1.29  ,        0.0824, -0.0558,  0.5366])In [97]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]In [98]: pd.get_dummies(pd.cut(values, bins))Out[98]:    (0.0, 0.2]  (0.2, 0.4]  (0.4, 0.6]  (0.6, 0.8]  (0.8, 1.0]0           0           0           1           0           01           0           0           0           0           02           0           0           0           0           03           0           0           0           0           04           1           0           0           0           05           0           0           0           0           06           0           0           0           0           07           1           0           0           0           08           0           0           0           0           09           0           0           1           0           0

get_dummies还能够承受一个DF参数:

In [99]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],   ....:                    'C': [1, 2, 3]})   ....: In [100]: pd.get_dummies(df)Out[100]:    C  A_a  A_b  B_b  B_c0  1    1    0    0    11  2    0    1    0    12  3    1    0    1    0

本文已收录于 http://www.flydean.com/05-python-pandas-reshaping-pivot/

最艰深的解读,最粗浅的干货,最简洁的教程,泛滥你不晓得的小技巧等你来发现!

欢送关注我的公众号:「程序那些事」,懂技术,更懂你!