简介

Pandas提供了很多合并Series和Dataframe的弱小的性能,通过这些性能能够不便的进行数据分析。本文将会具体解说如何应用Pandas来合并Series和Dataframe。

应用concat

concat是最罕用的合并DF的办法,先看下concat的定义:

pd.concat(objs, axis=0, join='outer', ignore_index=False, keys=None,          levels=None, names=None, verify_integrity=False, copy=True)

看一下咱们常常会用到的几个参数:

objs是Series或者Series的序列或者映射。

axis指定连贯的轴。

join : {‘inner’, ‘outer’}, 连贯形式,怎么解决其余轴的index,outer示意合并,inner示意交加。

ignore_index: 疏忽本来的index值,应用0,1,… n-1来代替。

copy:是否进行拷贝。

keys:指定最外层的多层次构造的index。

咱们先定义几个DF,而后看一下怎么应用concat把这几个DF连接起来:

In [1]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],   ...:                     'B': ['B0', 'B1', 'B2', 'B3'],   ...:                     'C': ['C0', 'C1', 'C2', 'C3'],   ...:                     'D': ['D0', 'D1', 'D2', 'D3']},   ...:                    index=[0, 1, 2, 3])   ...: In [2]: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],   ...:                     'B': ['B4', 'B5', 'B6', 'B7'],   ...:                     'C': ['C4', 'C5', 'C6', 'C7'],   ...:                     'D': ['D4', 'D5', 'D6', 'D7']},   ...:                    index=[4, 5, 6, 7])   ...: In [3]: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],   ...:                     'B': ['B8', 'B9', 'B10', 'B11'],   ...:                     'C': ['C8', 'C9', 'C10', 'C11'],   ...:                     'D': ['D8', 'D9', 'D10', 'D11']},   ...:                    index=[8, 9, 10, 11])   ...: In [4]: frames = [df1, df2, df3]In [5]: result = pd.concat(frames)

df1,df2,df3定义了同样的列名和不同的index,而后将他们放在frames中形成了一个DF的list,将其作为参数传入concat就能够进行DF的合并。

举个多层级的例子:

In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])

应用keys能够指定frames中不同frames的key。

应用的时候,咱们能够通过抉择内部的key来返回特定的frame:

In [7]: result.loc['y']Out[7]:     A   B   C   D4  A4  B4  C4  D45  A5  B5  C5  D56  A6  B6  C6  D67  A7  B7  C7  D7

下面的例子连贯的轴默认是0,也就是按行来进行连贯,上面咱们来看一个例子按列来进行连贯,如果要按列来连贯,能够指定axis=1:

In [8]: df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'],   ...:                     'D': ['D2', 'D3', 'D6', 'D7'],   ...:                     'F': ['F2', 'F3', 'F6', 'F7']},   ...:                    index=[2, 3, 6, 7])   ...: In [9]: result = pd.concat([df1, df4], axis=1, sort=False)

默认的 join='outer',合并之后index不存在的中央会补全为NaN。

上面看一个join='inner'的状况:

In [10]: result = pd.concat([df1, df4], axis=1, join='inner')

join='inner' 只会抉择index雷同的进行展现。

如果合并之后,咱们只想保留原来frame的index相干的数据,那么能够应用reindex:

In [11]: result = pd.concat([df1, df4], axis=1).reindex(df1.index)

或者这样:

In [12]: pd.concat([df1, df4.reindex(df1.index)], axis=1)Out[12]:     A   B   C   D    B    D    F0  A0  B0  C0  D0  NaN  NaN  NaN1  A1  B1  C1  D1  NaN  NaN  NaN2  A2  B2  C2  D2   B2   D2   F23  A3  B3  C3  D3   B3   D3   F3

看下后果:

能够合并DF和Series:

In [18]: s1 = pd.Series(['X0', 'X1', 'X2', 'X3'], name='X')In [19]: result = pd.concat([df1, s1], axis=1)

如果是多个Series,应用concat能够指定列名:

In [23]: s3 = pd.Series([0, 1, 2, 3], name='foo')In [24]: s4 = pd.Series([0, 1, 2, 3])In [25]: s5 = pd.Series([0, 1, 4, 5])
In [27]: pd.concat([s3, s4, s5], axis=1, keys=['red', 'blue', 'yellow'])Out[27]:    red  blue  yellow0    0     0       01    1     1       12    2     2       43    3     3       5

应用append

append能够看做是concat的简化版本,它沿着axis=0 进行concat:

In [13]: result = df1.append(df2)

如果append的两个 DF的列是不一样的会主动补全NaN:

In [14]: result = df1.append(df4, sort=False)

如果设置ignore_index=True,能够疏忽原来的index,并重写调配index:

In [17]: result = df1.append(df4, ignore_index=True, sort=False)

向DF append一个Series:

In [35]: s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])In [36]: result = df1.append(s2, ignore_index=True)

应用merge

和DF最相似的就是数据库的表格,能够应用merge来进行相似数据库操作的DF合并操作。

先看下merge的定义:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,         left_index=False, right_index=False, sort=True,         suffixes=('_x', '_y'), copy=True, indicator=False,         validate=None)

Left, right是要合并的两个DF 或者 Series。

on代表的是join的列或者index名。

left_on:左连贯

right_on:右连贯

left_index: 连贯之后,抉择应用右边的index或者column。

right_index:连贯之后,抉择应用左边的index或者column。

how:连贯的形式,'left', 'right', 'outer', 'inner'. 默认 inner.

sort: 是否排序。

suffixes: 解决反复的列。

copy: 是否拷贝数据

先看一个简略merge的例子:

In [39]: left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],   ....:                      'A': ['A0', 'A1', 'A2', 'A3'],   ....:                      'B': ['B0', 'B1', 'B2', 'B3']})   ....: In [40]: right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],   ....:                       'C': ['C0', 'C1', 'C2', 'C3'],   ....:                       'D': ['D0', 'D1', 'D2', 'D3']})   ....: In [41]: result = pd.merge(left, right, on='key')

下面两个DF通过key来进行连贯。

再看一个多个key连贯的例子:

In [42]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],   ....:                      'key2': ['K0', 'K1', 'K0', 'K1'],   ....:                      'A': ['A0', 'A1', 'A2', 'A3'],   ....:                      'B': ['B0', 'B1', 'B2', 'B3']})   ....: In [43]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],   ....:                       'key2': ['K0', 'K0', 'K0', 'K0'],   ....:                       'C': ['C0', 'C1', 'C2', 'C3'],   ....:                       'D': ['D0', 'D1', 'D2', 'D3']})   ....: In [44]: result = pd.merge(left, right, on=['key1', 'key2'])

How 能够指定merge形式,和数据库一样,能够指定是内连贯,外连贯等:

合并办法SQL 办法
leftLEFT OUTER JOIN
rightRIGHT OUTER JOIN
outerFULL OUTER JOIN
innerINNER JOIN
In [45]: result = pd.merge(left, right, how='left', on=['key1', 'key2'])

指定indicator=True ,能够示意具体行的连贯形式:

In [60]: df1 = pd.DataFrame({'col1': [0, 1], 'col_left': ['a', 'b']})In [61]: df2 = pd.DataFrame({'col1': [1, 2, 2], 'col_right': [2, 2, 2]})In [62]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)Out[62]:    col1 col_left  col_right      _merge0     0        a        NaN   left_only1     1        b        2.0        both2     2      NaN        2.0  right_only3     2      NaN        2.0  right_only

如果传入字符串给indicator,会重命名indicator这一列的名字:

In [63]: pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')Out[63]:    col1 col_left  col_right indicator_column0     0        a        NaN        left_only1     1        b        2.0             both2     2      NaN        2.0       right_only3     2      NaN        2.0       right_only

多个index进行合并:

In [112]: leftindex = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'),   .....:                                        ('K1', 'X2')],   .....:                                       names=['key', 'X'])   .....: In [113]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],   .....:                      'B': ['B0', 'B1', 'B2']},   .....:                     index=leftindex)   .....: In [114]: rightindex = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),   .....:                                         ('K2', 'Y2'), ('K2', 'Y3')],   .....:                                        names=['key', 'Y'])   .....: In [115]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],   .....:                       'D': ['D0', 'D1', 'D2', 'D3']},   .....:                      index=rightindex)   .....: In [116]: result = pd.merge(left.reset_index(), right.reset_index(),   .....:                   on=['key'], how='inner').set_index(['key', 'X', 'Y'])

反对多个列的合并:

In [117]: left_index = pd.Index(['K0', 'K0', 'K1', 'K2'], name='key1')In [118]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],   .....:                      'B': ['B0', 'B1', 'B2', 'B3'],   .....:                      'key2': ['K0', 'K1', 'K0', 'K1']},   .....:                     index=left_index)   .....: In [119]: right_index = pd.Index(['K0', 'K1', 'K2', 'K2'], name='key1')In [120]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],   .....:                       'D': ['D0', 'D1', 'D2', 'D3'],   .....:                       'key2': ['K0', 'K0', 'K0', 'K1']},   .....:                      index=right_index)   .....: In [121]: result = left.merge(right, on=['key1', 'key2'])

应用join

join将两个不同index的DF合并成一个。能够看做是merge的简写。

In [84]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],   ....:                      'B': ['B0', 'B1', 'B2']},   ....:                     index=['K0', 'K1', 'K2'])   ....: In [85]: right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],   ....:                       'D': ['D0', 'D2', 'D3']},   ....:                      index=['K0', 'K2', 'K3'])   ....: In [86]: result = left.join(right)

能够指定how来指定连贯形式:

In [87]: result = left.join(right, how='outer')

默认join是按index来进行连贯。

还能够依照列来进行连贯:

In [91]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],   ....:                      'B': ['B0', 'B1', 'B2', 'B3'],   ....:                      'key': ['K0', 'K1', 'K0', 'K1']})   ....: In [92]: right = pd.DataFrame({'C': ['C0', 'C1'],   ....:                       'D': ['D0', 'D1']},   ....:                      index=['K0', 'K1'])   ....: In [93]: result = left.join(right, on='key')

单个index和多个index进行join:

In [100]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],   .....:                      'B': ['B0', 'B1', 'B2']},   .....:                      index=pd.Index(['K0', 'K1', 'K2'], name='key'))   .....: In [101]: index = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),   .....:                                   ('K2', 'Y2'), ('K2', 'Y3')],   .....:                                    names=['key', 'Y'])   .....: In [102]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],   .....:                       'D': ['D0', 'D1', 'D2', 'D3']},   .....:                       index=index)   .....: In [103]: result = left.join(right, how='inner')

列名反复的状况:

In [122]: left = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'v': [1, 2, 3]})In [123]: right = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'v': [4, 5, 6]})In [124]: result = pd.merge(left, right, on='k')

能够自定义反复列名的命名规定:

In [125]: result = pd.merge(left, right, on='k', suffixes=('_l', '_r'))

笼罩数据

有时候咱们须要应用DF2的数据来填充DF1的数据,这时候能够应用combine_first:

In [131]: df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],   .....:                    [np.nan, 7., np.nan]])   .....: In [132]: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]],   .....:                    index=[1, 2])   .....: 
In [133]: result = df1.combine_first(df2)

或者应用update:

In [134]: df1.update(df2)

本文已收录于 http://www.flydean.com/04-python-pandas-merge/

最艰深的解读,最粗浅的干货,最简洁的教程,泛滥你不晓得的小技巧等你来发现!

欢送关注我的公众号:「程序那些事」,懂技术,更懂你!