1. Table API & SQL 实战使用
案例阐明
性能阐明
通过socket读取数据源,进行单词的统计解决。
实现流程
- 初始化Table运行环境
转换操作解决:
1)以空格进行宰割
2)给每个单词计数累加1
3)依据单词进行分组解决
4)求和统计
5)输入打印数据
- 执行工作
FlinkTable API 形式实现
StreamTableApiApplication,代码实现:
//获取流解决的运行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build();//获取Table的运行环境StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings);//接入数据源DataStreamSource<String> lines = env.socketTextStream("10.10.20.15", 9922);//对字符串进行分词压平SingleOutputStreamOperator<String> words = lines.flatMap(new FlatMapFunction<String, String>() { @Override public void flatMap(String line, Collector<String> out) throws Exception { Arrays.stream(line.split(" ")).forEach(out::collect); }});//将DataStream转换成Table对象,字段名默认的是f0,给定字段名是wordTable table = tabEnv.fromDataStream(words, "word");//依照单词进行分组聚合操作Table resultTable = table.groupBy("word").select("word, sum(1L) as counts");//在流解决中,数据会源源不断的产生,须要累加解决,只能采纳用toRestractStream// DataStream<WordCount> wordCountDataStream = tabEnv.toAppendStream(resultTable, WordCount.class);// wordCountDataStream.printToErr("toAppendStream>>>");DataStream<Tuple2<Boolean, WordCount>> wordCountDataStream = tabEnv.toRetractStream(resultTable, WordCount.class);wordCountDataStream.printToErr("toRetractStream>>>");env.execute();
测试验证:
开启socket输出, 输出字符串:
[root@flink1 flink-1.11.2]# nc -lk 9922
FlinkTable SQL 形式实现
代码实现:
StreamTableSqlApplication实现类:
//获取流解决的运行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build();//获取Table的运行环境StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings);//接入数据源DataStreamSource<String> lines = env.socketTextStream("10.10.20.15", 9922);//对字符串进行分词压平SingleOutputStreamOperator<String> words = lines.flatMap(new FlatMapFunction<String, String>() { @Override public void flatMap(String line, Collector<String> out) throws Exception { Arrays.stream(line.split(" ")).forEach(out::collect); }});//将DataStream转换成Table对象,字段名默认的是f0,给定字段名是wordtabEnv.registerDataStream("t_wordcount", words, "word");//依照单词进行分组聚合操作Table resultTable = tabEnv.sqlQuery("select word,count(1) as counts from t_wordcount group by word");DataStream<Tuple2<Boolean, WordCount>> wordCountDataStream = tabEnv.toRetractStream(resultTable, WordCount.class);wordCountDataStream.printToErr("toRetractStream>>>");env.execute();
2. Flink SQL 滚动窗口实战
Flink SQL 窗口阐明
Flink SQL反对的窗口聚合次要是两种:Window聚合和Over聚合。这里次要介绍Window聚合。Window聚合反对两种工夫属性定义窗口:Event Time和Processing Time。每种工夫属性类型反对三种窗口类型:滚动窗口(TUMBLE)、滑动窗口(HOP)和会话窗口(SESSION)。
案例阐明
统计在过来的1分钟内有多少用户点击了某个的网页,能够通过定义一个窗口来收集最近1分钟内的数据,并对这个窗口内的数据进行计算。
测试数据:
| 用户名 | 拜访地址 | 拜访工夫|
| ------ | --------------------- | -------------------- |
| 张三 | http://taobao.com/xxx | 2021-05-10 10:00:00 |
| 张三 | http://taobao.com/xxx | 2021-05-10 10:00:10 |
| 张三 | http://taobao.com/xxx | 2021-05-10 10:00:49 |
| 张三 | http://taobao.com/xxx | 2021-05-10 10:01:05 |
| 张三 | http://taobao.com/xxx | 2021-05-10 10:01:58 |
| 李四 | http://taobao.com/xxx | 2021-05-10 10:02:10 |
滚动窗口使用
滚动窗口(Tumbling windows)要用Tumble类来定义,另外还有三个办法:
- over:定义窗口长度
- on:用来分组(按工夫距离)或者排序(按行数)的工夫字段
- as:别名,必须呈现在前面的groupBy中
实现步骤:
- 初始化流运行环境
- 在流模式下应用blink planner
- 创立用户点击事件数据
- 将源数据写入临时文件并获取绝对路径
- 创立表载入用户点击事件数据
- 对表运行SQL查问,并将后果作为新表检索
- Table转换成DataStream
- 执行工作
TumbleUserClickApplication,实现代码:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings);// 将源数据写入临时文件并获取绝对路径String contents = "张三,http://taobao.com/xxx,2021-05-10 10:00:00\n" + "张三,http://taobao.com/xxx,2021-05-10 10:00:10\n" + "张三,http://taobao.com/xxx,2021-05-10 10:00:49\n" + "张三,http://taobao.com/xxx,2021-05-10 10:01:05\n" + "张三,http://taobao.com/xxx,2021-05-10 10:01:58\n" + "张三,http://taobao.com/xxx,2021-05-10 10:02:10\n";String path = FileUtil.createTempFile(contents);String ddl = "CREATE TABLE user_clicks (\n" + " username varchar,\n" + " click_url varchar,\n" + " ts TIMESTAMP(3),\n" + " WATERMARK FOR ts AS ts - INTERVAL '2' SECOND\n" + ") WITH (\n" + " 'connector.type' = 'filesystem',\n" + " 'connector.path' = '" + path + "',\n" + " 'format.type' = 'csv'\n" + ")";tabEnv.sqlUpdate(ddl);//对表数据进行sql查问,并将后果作为新表进行查问String query = "SELECT\n" + " TUMBLE_START(ts, INTERVAL '1' MINUTE),\n" + " TUMBLE_END(ts, INTERVAL '1' MINUTE),\n" + " username,\n" + " COUNT(click_url)\n" + "FROM user_clicks\n" + "GROUP BY TUMBLE(ts, INTERVAL '1' MINUTE), username";Table result = tabEnv.sqlQuery(query);tabEnv.toAppendStream(result, Row.class).print();env.execute();
以1分钟作为工夫滚动窗口,水印提早2秒。
输入后果:
4> 2021-10-10T10:00,2021-10-10T10:01,张三,34> 2021-10-10T10:01,2021-10-10T10:02,张三,24> 2021-10-10T10:02,2021-10-10T10:03,张三,1
3. Flink SQL 滑动窗口实战
实现步骤
- 初始化流运行环境
- 在流模式下应用blink planner
- 创立用户点击事件数据
- 将源数据写入临时文件并获取绝对路径
- 创立表载入用户点击事件数据
- 对表运行SQL查问,并将后果作为新表检索
- Table转换成DataStream
- 执行工作
实现代码
代码HopUserClickApplication:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings);// 将源数据写入临时文件并获取绝对路径String contents = "张三,http://taobao.com/xxx,2020-10-10 10:00:00\n" + "张三,http://taobao.com/xxx,2020-10-10 10:00:10\n" + "张三,http://taobao.com/xxx,2020-10-10 10:00:49\n" + "张三,http://taobao.com/xxx,2020-10-10 10:01:05\n" + "张三,http://taobao.com/xxx,2020-10-10 10:01:58\n" + "张三,http://taobao.com/xxx,2020-10-10 10:02:10\n";String path = FileUtil.createTempFile(contents);String ddl = "CREATE TABLE user_clicks (\n" + " username varchar,\n" + " click_url varchar,\n" + " ts TIMESTAMP(3),\n" + " WATERMARK FOR ts AS ts - INTERVAL '2' SECOND\n" + ") WITH (\n" + " 'connector.type' = 'filesystem',\n" + " 'connector.path' = '" + path + "',\n" + " 'format.type' = 'csv'\n" + ")";tabEnv.sqlUpdate(ddl);//对表数据进行sql查问,并将后果作为新表进行查问,每隔30秒,统计一次过来1分钟的数据String query = "SELECT\n" + " HOP_START(ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE),\n" + " HOP_END(ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE),\n" + " username,\n" + " COUNT(click_url)\n" + "FROM user_clicks\n" + "GROUP BY HOP (ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE), username";Table result = tabEnv.sqlQuery(query);tabEnv.toAppendStream(result, Row.class).print();env.execute();
每隔30秒,统计一次过来1分钟的用户点击数量。
输入后果:
4> 2021-05-10T09:59:30,2021-05-10T10:00:30,张三,24> 2021-05-10T10:00,2021-05-10T10:01,张三,34> 2021-05-10T10:00:30,2021-05-10T10:01:30,张三,24> 2021-05-10T10:01,2021-05-10T10:02,张三,24> 2021-05-10T10:01:30,2021-05-10T10:02:30,张三,24> 2021-05-10T10:02,2021-05-10T10:03,张三,1
4. Flink SQL 会话窗口实战
实现步骤
- 初始化流运行环境
- 在流模式下应用blink planner
- 创立用户点击事件数据
- 将源数据写入临时文件并获取绝对路径
- 创立表载入用户点击事件数据
- 对表运行SQL查问,并将后果作为新表检索
- Table转换成DataStream
- 执行工作
代码实现:
代码:SessionUserClickApplication
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings);// 将源数据写入临时文件并获取绝对路径String contents = "张三,http://taobao.com/xxx,2021-05-10 10:00:00\n" + "张三,http://taobao.com/xxx,2021-05-10 10:00:10\n" + "张三,http://taobao.com/xxx,2021-05-10 10:00:49\n" + "张三,http://taobao.com/xxx,2021-05-10 10:01:05\n" + "张三,http://taobao.com/xxx,2021-05-10 10:01:58\n" + "张三,http://taobao.com/xxx,2021-05-10 10:02:10\n";String path = FileUtil.createTempFile(contents);String ddl = "CREATE TABLE user_clicks (\n" + " username varchar,\n" + " click_url varchar,\n" + " ts TIMESTAMP(3),\n" + " WATERMARK FOR ts AS ts - INTERVAL '2' SECOND\n" + ") WITH (\n" + " 'connector.type' = 'filesystem',\n" + " 'connector.path' = '" + path + "',\n" + " 'format.type' = 'csv'\n" + ")";tabEnv.sqlUpdate(ddl);//对表数据进行sql查问,并将后果作为新表进行查问,每隔30秒统计一次数据String query = "SELECT\n" + " SESSION_START(ts, INTERVAL '30' SECOND),\n" + " SESSION_END(ts, INTERVAL '30' SECOND),\n" + " username,\n" + " COUNT(click_url)\n" + "FROM user_clicks\n" + "GROUP BY SESSION (ts, INTERVAL '30' SECOND), username";Table result = tabEnv.sqlQuery(query);tabEnv.toAppendStream(result, Row.class).print();env.execute();
每隔30秒统计一次用户点击数据.
输入后果:
4> 2021-05-10T10:00,2021-05-10T10:00:40,张三,24> 2021-05-10T10:00:49,2021-05-10T10:01:35,张三,24> 2021-05-10T10:01:58,2021-05-10T10:02:40,张三,2
本文由mirson创作分享,如需进一步交换,请加QQ群:19310171或拜访www.softart.cn