在进行本地 file 文件内容读取,或进行 HTTP 网络接口通信的时候,咱们常常应用 io.ReadAll 来读取近程接口返回的 resp.Body,但接口返回数据量有大有小,io.ReadAll 是怎么实现全副数据的读取的?

带着此疑难,让咱们走近 io.ReadAll 源码一探到底:

1. Demo 读取文件内容

package mainimport (    "fmt"    "io"    "os")func main() {    // 读取文件内容    fileInfo, err := os.Open("./abc.go")    if err != nil {        panic(err)    }    contentBytes, err := io.ReadAll(fileInfo)    if err != nil {        panic(err)    }    fmt.Println(string(contentBytes))}

此时读取的 IO stream 大小并不知道,io.ReadAll 应用什么策略读取全副数据呢?滑动窗口?线性/指数递增读取?Talk is cheap. Show me the code.

2. io.ReadAll Code

go1.16/src/io/io.go#L626

// ReadAll reads from r until an error or EOF and returns the data it read.// A successful call returns err == nil, not err == EOF. Because ReadAll is// defined to read from src until EOF, it does not treat an EOF from Read// as an error to be reported.func ReadAll(r Reader) ([]byte, error) {    b := make([]byte, 0, 512)    for {        if len(b) == cap(b) {            // Add more capacity (let append pick how much).            b = append(b, 0)[:len(b)]        }        //println(cap(b))        n, err := r.Read(b[len(b):cap(b)])        b = b[:len(b)+n]        if err != nil {            if err == EOF {                err = nil            }            return b, err        }    }}

源码解析:
从下面源码能够看到,应用 make 先默认申请 cap = 512[]byte,而后进入 for 循环迭代,直到数据全副读取实现。for 循环中,首先通过 len(b) == cap(b) 判断 b 的容量是否满了,如果曾经满了,应用 append(b, 0) 追加一个元素,此时会产生什么呢?

咱们晓得,一个 slice 容量不够了须要扩容,但扩容机制是怎么的呢?持续 Show me the code.

3. slice 扩容机制

go1.16/src/runtime/slice.go#L125

// growslice handles slice growth during append.// It is passed the slice element type, the old slice, and the desired new minimum capacity,// and it returns a new slice with at least that capacity, with the old data// copied into it.// The new slice's length is set to the old slice's length,// NOT to the new requested capacity.// This is for codegen convenience. The old slice's length is used immediately// to calculate where to write new values during an append.// TODO: When the old backend is gone, reconsider this decision.// The SSA backend might prefer the new length or to return only ptr/cap and save stack space.func growslice(et *_type, old slice, cap int) slice {    ...    newcap := old.cap    doublecap := newcap + newcap    //println("newcap: ", newcap)    //println("cap: ", cap)    if cap > doublecap {        newcap = cap    } else {        if old.cap < 1024 {            newcap = doublecap        } else {            // Check 0 < newcap to detect overflow            // and prevent an infinite loop.            for 0 < newcap && newcap < cap {                newcap += newcap / 4            }            // Set newcap to the requested cap when            // the newcap calculation overflowed.            if newcap <= 0 {                newcap = cap            }        }    }...}

源码解析:
从下面源码能够看到,slice 扩容算法为:
1). 当须要的容量(cap)超过原切片容量的两倍(doublecap)时,会应用须要的容量作为新容量(newcap);
2). 当原切片容量 < 1024 时,新切片的容量(newcap)会间接翻倍(doublecap);
3). 当原切片容量 >= 1024 时,会按原切片容量重复地减少 1/4,直到新容量(newcap)超过所须要的容量;

举例说明:
在下面 io.ReadAll 源码中,初始 slice cap = 512,前面扩容将会:

5121024(doublecap)1280(1024 + 1024/4)1600(1280 + 1280/4)2000(1600 + 1600/4)...

理论扩容 cap 是这样的吗?让咱们验证一下:

before newcap:  1024-after newcap:  1024before newcap:  1280-after newcap:  1280before newcap:  1600-after newcap:  1792before newcap:  2240-after newcap:  2304

奇怪?发现 after newcap 并没有依照下面料想的值扩容,认真挖代码,发现除了依照下面 slice cap 扩容外,还对内存调配进行了“对齐”:

go1.16/src/runtime/slice.go#L198

    println("before newcap: ", newcap)    var overflow bool    var lenmem, newlenmem, capmem uintptr    // Specialize for common values of et.size.    // For 1 we don't need any division/multiplication.    // For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant.    // For powers of 2, use a variable shift.    switch {    ...    case isPowerOfTwo(et.size):        var shift uintptr        if sys.PtrSize == 8 {            // Mask shift for better code generation.            shift = uintptr(sys.Ctz64(uint64(et.size))) & 63        } else {            shift = uintptr(sys.Ctz32(uint32(et.size))) & 31        }        lenmem = uintptr(old.len) << shift        newlenmem = uintptr(cap) << shift        capmem = roundupsize(uintptr(newcap) << shift) // 进入到内存块(memory block)调配        overflow = uintptr(newcap) > (maxAlloc >> shift)        newcap = int(capmem >> shift)    ...    }    println("after newcap: ", newcap)

进入到内存块(memory block)调配:
go1.16/src/runtime/msize.go#L13

// Returns size of the memory block that mallocgc will allocate if you ask for the size.func roundupsize(size uintptr) uintptr {    if size < _MaxSmallSize {        if size <= smallSizeMax-8 {            return uintptr(class_to_size[size_to_class8[divRoundUp(size, smallSizeDiv)]])        } else {            return uintptr(class_to_size[size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]])        }    }    if size+_PageSize < size {        return size    }    return alignUp(size, _PageSize)}

获取 spanClass 对应的 size
go1.16/src/runtime/sizeclasses.go#L84

const (    _NumSizeClasses = 68)var class_to_size = [_NumSizeClasses]uint16{0, 8, 16, 24, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384, 416, 448, 480, 512, 576, 640, 704, 768, 896, 1024, 1152, 1280, 1408, 1536, 1792, 2048, 2304, 2688, 3072, 3200, 3456, 4096, 4864, 5376, 6144, 6528, 6784, 6912, 8192, 9472, 9728, 10240, 10880, 12288, 13568, 14336, 16384, 18432, 19072, 20480, 21760, 24576, 27264, 28672, 32768}

从下面 68spanClass 能够看到,咱们想要调配 1600 被对齐到了 17922240 被对齐到了 2304,合乎上面的验证后果:

before newcap:  1024-after newcap:  1024before newcap:  1280-after newcap:  1280before newcap:  1600-after newcap:  1792before newcap:  2240-after newcap:  2304

4. 小结

从下面的源码剖析能够看到,io.ReadAll 通过应用 slice append 主动扩容 + 内存对齐机制,应用减少的容量来实现对 io stream 的全副读取。slice append 扩容算法为:
1). 当须要的容量(cap)超过原切片容量的两倍(doublecap)时,会应用须要的容量作为新容量(newcap);
2). 当原切片容量 < 1024 时,新切片的容量(newcap)会间接翻倍(doublecap);
3). 当原切片容量 >= 1024 时,会按原切片容量重复地减少 1/4,直到新容量(newcap)超过所须要的容量;

前面将会有更多系列文章,解读内存调配、GC 机制、GPM 调度、面试系列、K8s 系列、etcd 系列等,如有谬误恳请斧正。最初,祝大家端午节高兴~