简介

明天咱们会解说一下Pandas的高级教程,包含读写文件、选取子集和图形示意等。

读写文件

数据处理的一个关键步骤就是读取文件进行剖析,而后将剖析处理结果再次写入文件。

Pandas反对多种文件格式的读取和写入:

In [108]: pd.read_ read_clipboard() read_excel()     read_fwf()       read_hdf()       read_json        read_parquet     read_sas         read_sql_query   read_stata read_csv         read_feather()   read_gbq()       read_html        read_msgpack     read_pickle      read_sql         read_sql_table   read_table

接下来咱们会以Pandas官网提供的Titanic.csv为例来解说Pandas的应用。

Titanic.csv提供了800多个泰坦利特号上乘客的信息,是一个891 rows x 12 columns的矩阵。

咱们应用Pandas来读取这个csv:

In [5]: titanic=pd.read_csv("titanic.csv")

read_csv办法会将csv文件转换成为pandas 的DataFrame

默认状况下咱们间接应用DF变量,会默认展现前5行和后5行数据:

In [3]: titanicOut[3]:      PassengerId  Survived  Pclass                                               Name     Sex  ...  Parch            Ticket     Fare Cabin  Embarked0              1         0       3                            Braund, Mr. Owen Harris    male  ...      0         A/5 21171   7.2500   NaN         S1              2         1       1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  ...      0          PC 17599  71.2833   C85         C2              3         1       3                             Heikkinen, Miss. Laina  female  ...      0  STON/O2. 3101282   7.9250   NaN         S3              4         1       1       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  ...      0            113803  53.1000  C123         S4              5         0       3                           Allen, Mr. William Henry    male  ...      0            373450   8.0500   NaN         S..           ...       ...     ...                                                ...     ...  ...    ...               ...      ...   ...       ...886          887         0       2                              Montvila, Rev. Juozas    male  ...      0            211536  13.0000   NaN         S887          888         1       1                       Graham, Miss. Margaret Edith  female  ...      0            112053  30.0000   B42         S888          889         0       3           Johnston, Miss. Catherine Helen "Carrie"  female  ...      2        W./C. 6607  23.4500   NaN         S889          890         1       1                              Behr, Mr. Karl Howell    male  ...      0            111369  30.0000  C148         C890          891         0       3                                Dooley, Mr. Patrick    male  ...      0            370376   7.7500   NaN         Q[891 rows x 12 columns]

能够应用head(n)和tail(n)来指定特定的行数:

In [4]: titanic.head(8)Out[4]:    PassengerId  Survived  Pclass                                               Name     Sex  ...  Parch            Ticket     Fare Cabin  Embarked0            1         0       3                            Braund, Mr. Owen Harris    male  ...      0         A/5 21171   7.2500   NaN         S1            2         1       1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  ...      0          PC 17599  71.2833   C85         C2            3         1       3                             Heikkinen, Miss. Laina  female  ...      0  STON/O2. 3101282   7.9250   NaN         S3            4         1       1       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  ...      0            113803  53.1000  C123         S4            5         0       3                           Allen, Mr. William Henry    male  ...      0            373450   8.0500   NaN         S5            6         0       3                                   Moran, Mr. James    male  ...      0            330877   8.4583   NaN         Q6            7         0       1                            McCarthy, Mr. Timothy J    male  ...      0             17463  51.8625   E46         S7            8         0       3                     Palsson, Master. Gosta Leonard    male  ...      1            349909  21.0750   NaN         S[8 rows x 12 columns]

应用dtypes能够查看每一列的数据类型:

In [5]: titanic.dtypesOut[5]: PassengerId      int64Survived         int64Pclass           int64Name            objectSex             objectAge            float64SibSp            int64Parch            int64Ticket          objectFare           float64Cabin           objectEmbarked        objectdtype: object

应用to_excel能够将DF转换为excel文件,应用read_excel能够再次读取excel文件:

In [11]: titanic.to_excel('titanic.xlsx', sheet_name='passengers', index=False)In [12]: titanic = pd.read_excel('titanic.xlsx', sheet_name='passengers')

应用info()能够来对DF进行一个初步的统计:

In [14]: titanic.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 891 entries, 0 to 890Data columns (total 12 columns):PassengerId    891 non-null int64Survived       891 non-null int64Pclass         891 non-null int64Name           891 non-null objectSex            891 non-null objectAge            714 non-null float64SibSp          891 non-null int64Parch          891 non-null int64Ticket         891 non-null objectFare           891 non-null float64Cabin          204 non-null objectEmbarked       889 non-null objectdtypes: float64(2), int64(5), object(5)memory usage: 83.6+ KB

DF的抉择

抉择列数据

DF的head或者tail办法只能显示所有的列数据,上面的办法能够抉择特定的列数据。

In [15]: ages = titanic["Age"]In [16]: ages.head()Out[16]:0    22.01    38.02    26.03    35.04    35.0Name: Age, dtype: float64

每一列都是一个Series:

In [6]: type(titanic["Age"])Out[6]: pandas.core.series.SeriesIn [7]: titanic["Age"].shapeOut[7]: (891,)

还能够多选:

In [8]: age_sex = titanic[["Age", "Sex"]]In [9]: age_sex.head()Out[9]:     Age     Sex0  22.0    male1  38.0  female2  26.0  female3  35.0  female4  35.0    male

如果抉择多列的话,返回的后果就是一个DF类型:

In [10]: type(titanic[["Age", "Sex"]])Out[10]: pandas.core.frame.DataFrameIn [11]: titanic[["Age", "Sex"]].shapeOut[11]: (891, 2)

抉择行数据

下面咱们讲到了怎么抉择列数据,上面咱们来看看怎么抉择行数据:

抉择客户年龄大于35岁的:

In [12]: above_35 = titanic[titanic["Age"] > 35]In [13]: above_35.head()Out[13]:     PassengerId  Survived  Pclass                                               Name     Sex  ...  Parch    Ticket     Fare Cabin  Embarked1             2         1       1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  ...      0  PC 17599  71.2833   C85         C6             7         0       1                            McCarthy, Mr. Timothy J    male  ...      0     17463  51.8625   E46         S11           12         1       1                           Bonnell, Miss. Elizabeth  female  ...      0    113783  26.5500  C103         S13           14         0       3                        Andersson, Mr. Anders Johan    male  ...      5    347082  31.2750   NaN         S15           16         1       2                   Hewlett, Mrs. (Mary D Kingcome)   female  ...      0    248706  16.0000   NaN         S[5 rows x 12 columns]

应用isin抉择Pclass在2和3的所有客户:

In [16]: class_23 = titanic[titanic["Pclass"].isin([2, 3])]In [17]: class_23.head()Out[17]:    PassengerId  Survived  Pclass                            Name     Sex   Age  SibSp  Parch            Ticket     Fare Cabin Embarked0            1         0       3         Braund, Mr. Owen Harris    male  22.0      1      0         A/5 21171   7.2500   NaN        S2            3         1       3          Heikkinen, Miss. Laina  female  26.0      0      0  STON/O2. 3101282   7.9250   NaN        S4            5         0       3        Allen, Mr. William Henry    male  35.0      0      0            373450   8.0500   NaN        S5            6         0       3                Moran, Mr. James    male   NaN      0      0            330877   8.4583   NaN        Q7            8         0       3  Palsson, Master. Gosta Leonard    male   2.0      3      1            349909  21.0750   NaN        S

下面的isin等于:

In [18]: class_23 = titanic[(titanic["Pclass"] == 2) | (titanic["Pclass"] == 3)]

筛选Age不是空的:

In [20]: age_no_na = titanic[titanic["Age"].notna()]In [21]: age_no_na.head()Out[21]:    PassengerId  Survived  Pclass                                               Name     Sex  ...  Parch            Ticket     Fare Cabin  Embarked0            1         0       3                            Braund, Mr. Owen Harris    male  ...      0         A/5 21171   7.2500   NaN         S1            2         1       1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  ...      0          PC 17599  71.2833   C85         C2            3         1       3                             Heikkinen, Miss. Laina  female  ...      0  STON/O2. 3101282   7.9250   NaN         S3            4         1       1       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  ...      0            113803  53.1000  C123         S4            5         0       3                           Allen, Mr. William Henry    male  ...      0            373450   8.0500   NaN         S[5 rows x 12 columns]

同时抉择行和列

咱们能够同时抉择行和列。

应用loc和iloc能够进行行和列的抉择,他们两者的区别是loc是应用名字进行抉择,iloc是应用数字进行抉择。

抉择age>35的乘客名:

In [23]: adult_names = titanic.loc[titanic["Age"] > 35, "Name"]In [24]: adult_names.head()Out[24]: 1     Cumings, Mrs. John Bradley (Florence Briggs Th...6                               McCarthy, Mr. Timothy J11                             Bonnell, Miss. Elizabeth13                          Andersson, Mr. Anders Johan15                     Hewlett, Mrs. (Mary D Kingcome) Name: Name, dtype: object

loc中第一个值示意行抉择,第二个值示意列抉择。

应用iloc进行抉择:

In [25]: titanic.iloc[9:25, 2:5]Out[25]:     Pclass                                 Name     Sex9        2  Nasser, Mrs. Nicholas (Adele Achem)  female10       3      Sandstrom, Miss. Marguerite Rut  female11       1             Bonnell, Miss. Elizabeth  female12       3       Saundercock, Mr. William Henry    male13       3          Andersson, Mr. Anders Johan    male..     ...                                  ...     ...20       2                 Fynney, Mr. Joseph J    male21       2                Beesley, Mr. Lawrence    male22       3          McGowan, Miss. Anna "Annie"  female23       1         Sloper, Mr. William Thompson    male24       3        Palsson, Miss. Torborg Danira  female[16 rows x 3 columns]

应用plots作图

怎么将DF转换成为多样化的图形展现呢?

要想在命令行中应用matplotlib作图,那么须要启动ipython的QT环境:

ipython qtconsole --pylab=inline

间接应用plot来展现一下下面咱们读取的乘客信息:

import matplotlib.pyplot as pltimport pandas as pdtitanic = pd.read_excel('titanic.xlsx', sheet_name='passengers')titanic.plot()

横坐标就是DF中的index,列坐标是各个列的名字。留神下面的列只展现的是数值类型的。

咱们只展现age信息:

titanic['Age'].plot()

默认的是柱状图,咱们能够转换图形的模式,比方点图:

titanic.plot.scatter(x="PassengerId",y="Age", alpha=0.5)

抉择数据中的PassengerId作为x轴,age作为y轴:

除了散点图,还反对很多其余的图像:

[method_name for method_name in dir(titanic.plot) if not method_name.startswith("_")]Out[11]: ['area', 'bar', 'barh', 'box', 'density', 'hexbin', 'hist', 'kde', 'line', 'pie', 'scatter']

再看一个box图:

titanic['Age'].plot.box()

能够看到,乘客的年龄大多集中在20-40岁之间。

还能够将抉择的多列别离作图展现:

titanic.plot.area(figsize=(12, 4), subplots=True)

指定特定的列:

titanic[['Age','Pclass']].plot.area(figsize=(12, 4), subplots=True)

还能够先画图,而后填充:

fig, axs = plt.subplots(figsize=(12, 4));

先画一个空的图,而后对其进行填充:

titanic['Age'].plot.area(ax=axs);axs.set_ylabel("Age");fig

应用现有的列创立新的列

有时候,咱们须要对现有的列进行变换,以失去新的列,比方咱们想增加一个Age2列,它的值是Age列+10,则能够这样:

titanic["Age2"]=titanic["Age"]+10;titanic[["Age","Age2"]].head()Out[34]:     Age  Age20  22.0  32.01  38.0  48.02  26.0  36.03  35.0  45.04  35.0  45.0

还能够对列进行重命名:

titanic_renamed = titanic.rename(   ...:     columns={"Age": "Age2",   ...:              "Pclass": "Pclas2"})

列名转换为小写:

titanic_renamed = titanic_renamed.rename(columns=str.lower)

进行统计

咱们来统计下乘客的平均年龄:

titanic["Age"].mean()Out[35]: 29.69911764705882

抉择中位数:

titanic[["Age", "Fare"]].median()Out[36]: Age     28.0000Fare    14.4542dtype: float64

更多信息:

titanic[["Age", "Fare"]].describe()Out[37]:               Age        Farecount  714.000000  891.000000mean    29.699118   32.204208std     14.526497   49.693429min      0.420000    0.00000025%     20.125000    7.91040050%     28.000000   14.45420075%     38.000000   31.000000max     80.000000  512.329200

应用agg指定特定的聚合办法:

titanic.agg({'Age': ['min', 'max', 'median', 'skew'],'Fare': ['min', 'max', 'median', 'mean']})Out[38]:               Age        Faremax     80.000000  512.329200mean          NaN   32.204208median  28.000000   14.454200min      0.420000    0.000000skew     0.389108         NaN

能够应用groupby:

titanic[["Sex", "Age"]].groupby("Sex").mean()Out[39]:               AgeSex              female  27.915709male    30.726645

groupby所有的列:

titanic.groupby("Sex").mean()Out[40]:         PassengerId  Survived    Pclass        Age     SibSp     Parch  Sex                                                                      female   431.028662  0.742038  2.159236  27.915709  0.694268  0.649682   male     454.147314  0.188908  2.389948  30.726645  0.429809  0.235702   

groupby之后还能够抉择特定的列:

titanic.groupby("Sex")["Age"].mean()Out[41]: Sexfemale    27.915709male      30.726645Name: Age, dtype: float64

能够分类进行count:

titanic["Pclass"].value_counts()Out[42]: 3    4911    2162    184Name: Pclass, dtype: int64

下面等同于:

titanic.groupby("Pclass")["Pclass"].count()

DF重组

能够依据某列进行排序:

titanic.sort_values(by="Age").head()Out[43]:      PassengerId  Survived  Pclass                             Name     Sex  \803          804         1       3  Thomas, Master. Assad Alexander    male   755          756         1       2        Hamalainen, Master. Viljo    male   644          645         1       3           Baclini, Miss. Eugenie  female   469          470         1       3    Baclini, Miss. Helene Barbara  female   78            79         1       2    Caldwell, Master. Alden Gates    male   

依据多列排序:

titanic.sort_values(by=['Pclass', 'Age'], ascending=False).head()Out[44]:      PassengerId  Survived  Pclass                       Name     Sex   Age  \851          852         0       3        Svensson, Mr. Johan    male  74.0   116          117         0       3       Connors, Mr. Patrick    male  70.5   280          281         0       3           Duane, Mr. Frank    male  65.0   483          484         1       3     Turkula, Mrs. (Hedwig)  female  63.0   326          327         0       3  Nysveen, Mr. Johan Hansen    male  61.0   

抉择特定的行和列数据,上面的例子咱们将会抉择性别为女性的局部数据:

female=titanic[titanic['Sex']=='female']female_subset=female[["Age","Pclass","PassengerId","Survived"]].sort_values(["Pclass"]).groupby(["Pclass"]).head(2)female_subsetOut[58]:       Age  Pclass  PassengerId  Survived1    38.0       1            2         1356  22.0       1          357         1726  30.0       2          727         1443  28.0       2          444         1855  18.0       3          856         1654  18.0       3          655         0

应用pivot能够进行轴的转换:

female_subset.pivot(columns="Pclass", values="Age")Out[62]: Pclass     1     2     31       38.0   NaN   NaN356     22.0   NaN   NaN443      NaN  28.0   NaN654      NaN   NaN  18.0726      NaN  30.0   NaN855      NaN   NaN  18.0female_subset.pivot(columns="Pclass", values="Age").plot()

本文已收录于 http://www.flydean.com/02-python-pandas-advanced/

最艰深的解读,最粗浅的干货,最简洁的教程,泛滥你不晓得的小技巧等你来发现!

欢送关注我的公众号:「程序那些事」,懂技术,更懂你!