前言
前两天做我的项目的时候,想进步一下插入表的性能优化,因为是两张表,先插旧的表,紧接着插新的表,一万多条数据就有点慢了
前面就想到了线程池ThreadPoolExecutor,而用的是Spring Boot我的项目,能够用Spring提供的对ThreadPoolExecutor封装的线程池ThreadPoolTaskExecutor,间接应用注解启用
应用步骤
先创立一个线程池的配置,让Spring Boot加载,用来定义如何创立一个ThreadPoolTaskExecutor,要应用@Configuration和@EnableAsync这两个注解,示意这是个配置类,并且是线程池的配置类。
Spring Boot 根底就不介绍了,系列教程和示例源码看这里:https://github.com/javastacks...
更多 Spring Boot 教程能够微信搜寻Java技术栈在后盾发送 boot 进行浏览,我都整顿好了。
@Configuration@EnableAsyncpublic class ExecutorConfig { private static final Logger logger = LoggerFactory.getLogger(ExecutorConfig.class); @Value("${async.executor.thread.core_pool_size}") private int corePoolSize; @Value("${async.executor.thread.max_pool_size}") private int maxPoolSize; @Value("${async.executor.thread.queue_capacity}") private int queueCapacity; @Value("${async.executor.thread.name.prefix}") private String namePrefix; @Bean(name = "asyncServiceExecutor") public Executor asyncServiceExecutor() { logger.info("start asyncServiceExecutor"); ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor(); //配置外围线程数 executor.setCorePoolSize(corePoolSize); //配置最大线程数 executor.setMaxPoolSize(maxPoolSize); //配置队列大小 executor.setQueueCapacity(queueCapacity); //配置线程池中的线程的名称前缀 executor.setThreadNamePrefix(namePrefix); // rejection-policy:当pool曾经达到max size的时候,如何解决新工作 // CALLER_RUNS:不在新线程中执行工作,而是有调用者所在的线程来执行 executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy()); //执行初始化 executor.initialize(); return executor; }}
@Value是我配置在application.properties,能够参考配置,自在定义
# 异步线程配置# 配置外围线程数async.executor.thread.core_pool_size = 5# 配置最大线程数async.executor.thread.max_pool_size = 5# 配置队列大小async.executor.thread.queue_capacity = 99999# 配置线程池中的线程的名称前缀async.executor.thread.name.prefix = async-service-
创立一个Service接口,是异步线程的接口
public interface AsyncService { /** * 执行异步工作 * 能够依据需要,本人加参数拟定,我这里就做个测试演示 */ void executeAsync();}
实现类
@Servicepublic class AsyncServiceImpl implements AsyncService { private static final Logger logger = LoggerFactory.getLogger(AsyncServiceImpl.class); @Override @Async("asyncServiceExecutor") public void executeAsync() { logger.info("start executeAsync"); System.out.println("异步线程要做的事件"); System.out.println("能够在这里执行批量插入等耗时的事件"); logger.info("end executeAsync"); }}
将Service层的服务异步化,在executeAsync()办法上减少注解@Async("asyncServiceExecutor"),asyncServiceExecutor办法是后面ExecutorConfig.java中的办法名,表明executeAsync办法进入的线程池是asyncServiceExecutor办法创立的。
接下来就是在Controller里或者是哪里通过注解@Autowired注入这个Service
@Autowiredprivate AsyncService asyncService;@GetMapping("/async")public void async(){ asyncService.executeAsync();}
用postmain或者其余工具来屡次测试申请一下
2018-07-16 22:15:47.655 INFO 10516 --- [async-service-5] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync异步线程要做的事件能够在这里执行批量插入等耗时的事件2018-07-16 22:15:47.655 INFO 10516 --- [async-service-5] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync2018-07-16 22:15:47.770 INFO 10516 --- [async-service-1] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync异步线程要做的事件能够在这里执行批量插入等耗时的事件2018-07-16 22:15:47.770 INFO 10516 --- [async-service-1] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync2018-07-16 22:15:47.816 INFO 10516 --- [async-service-2] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync异步线程要做的事件能够在这里执行批量插入等耗时的事件2018-07-16 22:15:47.816 INFO 10516 --- [async-service-2] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync2018-07-16 22:15:48.833 INFO 10516 --- [async-service-3] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync异步线程要做的事件能够在这里执行批量插入等耗时的事件2018-07-16 22:15:48.834 INFO 10516 --- [async-service-3] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync2018-07-16 22:15:48.986 INFO 10516 --- [async-service-4] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync异步线程要做的事件能够在这里执行批量插入等耗时的事件2018-07-16 22:15:48.987 INFO 10516 --- [async-service-4] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
通过以上日志能够发现,[async-service-]是有多个线程的,显然曾经在咱们配置的线程池中执行了,并且每次申请中,controller的起始和完结日志都是间断打印的,表明每次申请都疾速响应了,而耗时的操作都留给线程池中的线程去异步执行;
尽管咱们曾经用上了线程池,然而还不分明线程池过后的状况,有多少线程在执行,多少在队列中期待呢?这里我创立了一个ThreadPoolTaskExecutor的子类,在每次提交线程的时候都会将以后线程池的运行状况打印进去
import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;import org.springframework.util.concurrent.ListenableFuture;import java.util.concurrent.Callable;import java.util.concurrent.Future;import java.util.concurrent.ThreadPoolExecutor;/** * @Author: ChenBin */public class VisiableThreadPoolTaskExecutor extends ThreadPoolTaskExecutor { private static final Logger logger = LoggerFactory.getLogger(VisiableThreadPoolTaskExecutor.class); private void showThreadPoolInfo(String prefix) { ThreadPoolExecutor threadPoolExecutor = getThreadPoolExecutor(); if (null == threadPoolExecutor) { return; } logger.info("{}, {},taskCount [{}], completedTaskCount [{}], activeCount [{}], queueSize [{}]", this.getThreadNamePrefix(), prefix, threadPoolExecutor.getTaskCount(), threadPoolExecutor.getCompletedTaskCount(), threadPoolExecutor.getActiveCount(), threadPoolExecutor.getQueue().size()); } @Override public void execute(Runnable task) { showThreadPoolInfo("1. do execute"); super.execute(task); } @Override public void execute(Runnable task, long startTimeout) { showThreadPoolInfo("2. do execute"); super.execute(task, startTimeout); } @Override public Future<?> submit(Runnable task) { showThreadPoolInfo("1. do submit"); return super.submit(task); } @Override public <T> Future<T> submit(Callable<T> task) { showThreadPoolInfo("2. do submit"); return super.submit(task); } @Override public ListenableFuture<?> submitListenable(Runnable task) { showThreadPoolInfo("1. do submitListenable"); return super.submitListenable(task); } @Override public <T> ListenableFuture<T> submitListenable(Callable<T> task) { showThreadPoolInfo("2. do submitListenable"); return super.submitListenable(task); }}
如上所示,showThreadPoolInfo办法中将工作总数、已实现数、沉闷线程数,队列大小都打印进去了,而后Override了父类的execute、submit等办法,在外面调用showThreadPoolInfo办法,这样每次有工作被提交到线程池的时候,都会将以后线程池的根本状况打印到日志中;
批改ExecutorConfig.java的asyncServiceExecutor办法,将ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor()改为ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor()
@Bean(name = "asyncServiceExecutor")public Executor asyncServiceExecutor() { logger.info("start asyncServiceExecutor"); //在这里批改 ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor(); //配置外围线程数 executor.setCorePoolSize(corePoolSize); //配置最大线程数 executor.setMaxPoolSize(maxPoolSize); //配置队列大小 executor.setQueueCapacity(queueCapacity); //配置线程池中的线程的名称前缀 executor.setThreadNamePrefix(namePrefix); // rejection-policy:当pool曾经达到max size的时候,如何解决新工作 // CALLER_RUNS:不在新线程中执行工作,而是有调用者所在的线程来执行 executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy()); //执行初始化 executor.initialize(); return executor;}
再次启动该工程测试
2018-07-16 22:23:30.951 INFO 14088 --- [nio-8087-exec-2] u.d.e.e.i.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [0], completedTaskCount [0], activeCount [0], queueSize [0]2018-07-16 22:23:30.952 INFO 14088 --- [async-service-1] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync异步线程要做的事件能够在这里执行批量插入等耗时的事件2018-07-16 22:23:30.953 INFO 14088 --- [async-service-1] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync2018-07-16 22:23:31.351 INFO 14088 --- [nio-8087-exec-3] u.d.e.e.i.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [1], completedTaskCount [1], activeCount [0], queueSize [0]2018-07-16 22:23:31.353 INFO 14088 --- [async-service-2] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync异步线程要做的事件能够在这里执行批量插入等耗时的事件2018-07-16 22:23:31.353 INFO 14088 --- [async-service-2] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync2018-07-16 22:23:31.927 INFO 14088 --- [nio-8087-exec-5] u.d.e.e.i.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [2], completedTaskCount [2], activeCount [0], queueSize [0]2018-07-16 22:23:31.929 INFO 14088 --- [async-service-3] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync异步线程要做的事件能够在这里执行批量插入等耗时的事件2018-07-16 22:23:31.930 INFO 14088 --- [async-service-3] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync2018-07-16 22:23:32.496 INFO 14088 --- [nio-8087-exec-7] u.d.e.e.i.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [3], completedTaskCount [3], activeCount [0], queueSize [0]2018-07-16 22:23:32.498 INFO 14088 --- [async-service-4] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync异步线程要做的事件能够在这里执行批量插入等耗时的事件2018-07-16 22:23:32.499 INFO 14088 --- [async-service-4] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
留神这一行日志:
2018-07-16 22:23:32.496 INFO 14088 --- [nio-8087-exec-7] u.d.e.e.i.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [3], completedTaskCount [3], activeCount [0], queueSize [0]
这阐明提交工作到线程池的时候,调用的是submit(Callable task)这个办法,以后曾经提交了3个工作,实现了3个,以后有0个线程在解决工作,还剩0个工作在队列中期待,线程池的根本状况一路了然;
原文链接:https://blog.csdn.net/m0_3770...
版权申明:本文为CSDN博主「如漩涡」的原创文章,遵循CC 4.0 BY-SA版权协定,转载请附上原文出处链接及本申明。
近期热文举荐:
1.600+ 道 Java面试题及答案整顿(2021最新版)
2.终于靠开源我的项目弄到 IntelliJ IDEA 激活码了,真香!
3.阿里 Mock 工具正式开源,干掉市面上所有 Mock 工具!
4.Spring Cloud 2020.0.0 正式公布,全新颠覆性版本!
5.《Java开发手册(嵩山版)》最新公布,速速下载!
感觉不错,别忘了顺手点赞+转发哦!