环境
根底
- Anaconda
conda create -n onnx python=3.8 -yconda activate onnx# ONNX# https://github.com/onnx/onnxconda install -c conda-forge onnx -ypython -c "import onnx; print(onnx.__version__)"
import onnxmodel = onnx.load("model.onnx")
简化
# ONNX Simplifier# https://github.com/daquexian/onnx-simplifierpip install onnx-simplifierpython -m onnxsim -h
import onnxsimmodel_simp, check = onnxsim.simplify(model, perform_optimization=False)assert check, "Simplified ONNX model could not be validated"
<!--
转换
# ONNX to Caffe# https://github.com/MTlab/onnx2caffegit clone https://github.com/MTLab/onnx2caffe.git# ONNX to PyTorch# https://github.com/ToriML/onnx2pytorchpip install onnx2pytorch
-->
应用
给出些 ONNX 模型应用的示例办法。
提取子模型
import onnxinput_path = "path/to/the/original/model.onnx"output_path = "path/to/save/the/extracted/model.onnx"input_names = ["input_0", "input_1", "input_2"]output_names = ["output_0", "output_1"]onnx.utils.extract_model(input_path, output_path, input_names, output_names)
批改输入输出名称
def _onnx_rename(model, names, names_new): for node in model.graph.node: for i, n in enumerate(node.input): if n in names: node.input[i] = names_new[names.index(n)] for i, n in enumerate(node.output): if n in names: node.output[i] = names_new[names.index(n)] for node in model.graph.input: if node.name in names: node.name = names_new[names.index(node.name)] # print(model.graph.input) for node in model.graph.output: if node.name in names: node.name = names_new[names.index(node.name)] # print(model.graph.output)_onnx_rename(model, ["input", "output"], ["input_new", "output_new"])
批改输入输出维度
此为批改模型的。如果要批改某节点的,见参考 onnx_cut.py 的 _onnx_specify_shapes()
。
from onnx.tools import update_model_dimsupdate_model_dims.update_inputs_outputs_dims(model, {"input": [1, 3, 512, 512]}, {"scores": [100, 1], "boxes": [100, 4]})
推理模型节点维度
指明模型输出维度后,可主动推理后续节点的维度。
model_infer = onnx.shape_inference.infer_shapes(model)
获取图属性名称索引
辅助找出指定名称的图属性。
def _onnx_graph_name_map(graph_prop_list): m = {} for n in graph_prop_list: m[n.name] = n return mnode_map = _onnx_graph_name_map(graph.node)initializer_map = _onnx_graph_name_map(graph.initializer)input_map = _onnx_graph_name_map(graph.input)output_map = _onnx_graph_name_map(graph.output)value_info_map = _onnx_graph_name_map(graph.value_info)
获取节点输出名称索引
辅助找出指定输出名称的节点列表。输入同样。
def _onnx_node_input_map(node_list): m = {} for n in node_list: for n_input in n.input: if n_input in m: m[n_input].append(n) else: m[n_input] = [n] return mnode_input_map = _onnx_node_input_map(graph.node)
获取图属性地位
辅助找出图某属性所在列表地位。
def _onnx_graph_index(graph_prop_list, prop, by_name=False): for i, n in enumerate(graph_prop_list): if by_name: if n.name == prop.name: return i else: if n == prop: return i return -1node_i = _onnx_graph_index(graph.node, node)
获取某区间的节点
辅助找出某区间的节点字典。
def _onnx_node_between(node_beg, node_end, node_input_map): nodes = {} def _between(beg, end): if beg.name == end.name: return for n_output in beg.output: for n in node_input_map[n_output]: if n.name == end.name or n.name in nodes: continue nodes[n.name] = n _between(n, end) _between(node_beg, node_end) return nodes
替换某个节点
替换或批改某个节点的过程。
from onnx import helpernode = graph.node[100]node_i = _onnx_graph_index(graph.node, node)graph.node.remove(node)node_new = helper.make_node( 'Pad', # name ['X', 'pads', 'value'], # inputs ['Y'], # outputs mode='constant', # attributes)graph.node.insert(node_i, node_new)
模型运行推理
模型运行推理,失去输入的过程。
import cv2 as cvimport numpy as npimport onnxruntime as nxrunonnx_session = nxrun.InferenceSession("path/to/model.onnx")img = cv.imread("path/to/image.png", cv.IMREAD_COLOR)# _, _, h, w = input_node.shape # BCHW# img = cv.resize(src=img, dsize=(w, h), interpolation=cv.INTER_LINEAR_EXACT)input_data = np.swapaxes(img, 0, -1)input_data = input_data[np.newaxis, :].astype(np.float32)def _get_output_names(onnx_session): names = [] for node in onnx_session.get_outputs(): names.append(node.name) return namesoutput_names = _get_output_names(onnx_session)outputs = onnx_session.run( output_names, input_feed={"input": input_data})
参考
- onnx_cut.py
- ONNX Python API
GoCoding 集体实际的教训分享,可关注公众号!