本人跑的时候正确率0.89

  • numpy
  • PIL(如果须要对理论图片进行预测)

后果

  • minst的四个文件解压之后和这四个py文件放在同级文件夹
  • 运行完结后的权重W和偏移b也在同级文件夹下,csv文件只用来看,用的是bin文件

softmax.py

和训练、测试无关的所有函数

#!/usr/bin/pythonimport numpy as npnp.random.seed(0)# 定义softmax函数def SoftMax(z):    if np.ndim(z) == 2:        axisn = 1    else:        axisn = 0    s = np.exp(z) / np.sum(np.exp(z), axis=axisn, keepdims=True)    return s# b = np.array([1,2,4, 5,5,6]).reshape(2,3)# print(SoftMax(b))# 编码标签def OneCode(y):    r = len(y)    c = len(np.unique(y))    one_hot = np.zeros((r,c))    one_hot[np.arange(len(y)), y.astype(int).T] = 1    return one_hot# 定义 y_ 的计算函数def CalcY_(x, w, b):    # w * X.T + b 前面 +b 是一个播送运算,    y_ = np.dot(w, x.T) + b    return y_.T# 定义损失函数 - 穿插熵def cross_entropy(y, y_):    loss = -(1/len(y))*np.sum(y * np.log(y_))    return loss# 定义训练函数def train(tr_x, tr_y, N):    '''        '''    # 模型    # y = w1 * x1 + w2 * x2 + b    W = np.random.rand(10,784)    b = np.random.rand(10,1)    losss = []    losi = 0    y = OneCode(tr_y) # 把 1 2 3 4 转换成向量 0001 0010 0100 1000    for i in range(N):                # 计算loss        x = tr_x        y_ = SoftMax(CalcY_(x, W, b))        loss = cross_entropy(y, y_)        losss.append(loss)        # 计算梯度        grad_w = (1/len(x)) * np.dot((y_ - y).T, x)        grad_b = (1/len(x)) * np.sum((y_ - y))        # 更新参数                # 学习率 × 梯度        W = W - 0.5 * grad_w        b = b - 0.5 * grad_b        delta = abs(losi - loss)        print(i ,  loss ,delta)        # 损失值低于0.01 或者 其变动值低于0.0001        if(loss < 0.01 or delta < 0.0001):            break        losi = loss    return W,b# 定义测试函数def check(te_x, te_y, W, b):    # te_x,te_y = Iread('te')    # te_x = te_x / 255    # te_y = te_y    # print(W)    # print(b)    y_ = SoftMax(CalcY_(te_x, W, b))    l = np.argmax(y_, axis=1).reshape(10000,1)    right = np.sum(l == te_y.astype())/10000    print('right rate:', right)    return right

Idata.py

文件读取函数

#!/usr/bin/pythonimport numpy as npfilename_train_data ='./train-images-idx3-ubyte'filename_train_label='./train-labels-idx1-ubyte'filename_test_data  ='./t10k-images-idx3-ubyte'filename_test_label ='./t10k-labels-idx1-ubyte'def Iread_train_data():    fp = open(filename_train_data, 'rb')    fl = open(filename_train_label, 'rb')    fp.read(4*4)    fl.read(2*4)    nstrs=np.zeros((60000, 28*28))    l    =np.zeros((60000, 1))    for i in range( 60000):        fstr = fp.read(28*28)        lstr = fl.read(1)        l[i] = int.from_bytes(lstr,byteorder='big',signed=False)        nstrs[i,:] = np.frombuffer(fstr, dtype=np.uint8)    return nstrs,ldef Iread_test_data():    fp = open(filename_test_data, 'rb')    fl = open(filename_test_label, 'rb')    fp.read(4*4)    fl.read(2*4)    nstrs=np.zeros((10000, 28*28))    l    =np.zeros((10000, 1))    for i in range( 10000):        fstr = fp.read(28*28)        lstr = fl.read(1)        l[i] = int.from_bytes(lstr,byteorder='big',signed=False)        nstrs[i,:] = np.frombuffer(fstr, dtype=np.uint8)    return nstrs,ldef Iread(option):    if(option == 'tr'):        d,l = Iread_train_data()        return d,l    else if(option == 'te'):        d,l = Iread_test_data()        return d,l    else:        print('op err')

minst.py

实现训练和测试的脚本

#!/usr/bin/pythonimport numpy as npfrom Idata import Ireadfrom softmax import train,check# 读数据tr_x,tr_y = Iread('tr')te_x,te_y = Iread('te')# 训练集和测试集正规到 0-1 区间tr_x = tr_x / 255te_x = te_x / 255# print(tr_x.shape, tr_y.shape)# print(te_x.shape, te_y.shape)# 训练W,b = train(tr_x, tr_y, 1000)# 而后保留参数W.tofile('W.bin')b.tofile('b.bin')np.savetxt('w.csv', W, fmt='%f', delimiter=',')np.savetxt('b.csv', b, fmt='%f', delimiter=',')# 读取参数W = np.fromfile('W.bin').reshape(10, 784)b = np.fromfile('b.bin').reshape(10, 1)# 测试r = check(te_x, te_y, W, b)

predict.py

用来对一个理论的手写数字图像识别的脚本

#!/usr/bin/pythonimport numpy as npfrom softmax import SoftMax,CalcY_,cross_entropy,OneCodefrom PIL import Image# 图像文件必须是 28 × 28 的 0~255 灰度图像fname = '4.bmp'img = np.array(Image.open(fname))te_x = img.reshape(1, 28*28)te_x = te_x / 255print(te_x)W = np.fromfile('W.bin').reshape(10, 784)b = np.fromfile('b.bin').reshape(10, 1)y_ = SoftMax(CalcY_(te_x, W, b))y_ = np.argmax(y_, axis=1)print('pred:', y_)