原文链接:http://tecdat.cn/?p=12030



筹备数据

采样函数svsample须要其输出数据y是数值向量,而且没有任何缺失值(NA),如果提供其余任何内容,则会报错。在y蕴含零的状况下,会收回正告,并在进行辅助混合采样之前,将大小为sd(y)/ 10000的小偏移常数增加到平方收益上。

然而,咱们通常倡议完全避免零收益数据,例如通过事后升高零收益。上面是如何应用样本数据集进行阐明。

图1提供了该数据集中工夫序列的可视化。

R> par(mfrow = c(2, 1), mar = c(1.9, 1.9, 1.9, 0.5), mgp = c(2, 0.6, 0))R> plot(exrates$date, exrates$USD, type = "l",+ main = "Price of 1 EUR in USD")R> plot(exrates$date\[-1\], ret, type = "l", main = "Demeaned log returns")

除了事实世界的数据外,还能够应用内置的模仿数据生成器svsim。此函数仅对SV流程的实现,并返回svsim类的对象,该对象具备本人的print,summary和plot办法。

上面给出了应用svsim的示例代码,该模仿实例显示在图2中。

R> par(mfrow = c(2, 1))R> plot(sim)

运行采样器

函数svsample,它用作C语言中理论采样器的R-wrapper 。此函数的示例用法在上面的代码中提供了默认输入。

Calling GIS_C MCMC sampler with 11000 iter. Series length is 3139.0% \[+++++++++++++++++++++++++++++++++++++++++++++++++++\] 100%Timing (elapsed): 12.92 seconds.851 iterations per second.Converting results to coda objects... Done!Summarizing posterior draws... Done!

能够看出,该函数调用主MCMC采样器并将其输入转换为与coda兼容的对象。后者的实现次要是出于兼容性的思考,并且能够间接拜访收敛诊断查看。

svsample的返回值是svdraws类型的对象,该对象是具备八个元素的命名列表,其中蕴含(1)参数在para中绘制,(2)潜在的对数稳定率,(3)初始潜在的对数稳定率绘制latent0,(4)y中提供的数据,(5)运行时中的采样运行时,(6)先验中的先验超参数,(7)细化的参数值,以及(8)这些图的汇总统计信息,以及一些常见的转换。

评估输入并显示后果

依照惯例做法,可应用svdraws对象的print和summary办法。每个参数都有两个可选参数showpara和showlatent,用于指定应显示的输入。如果showpara为TRUE(默认设置),则会显示参数绘制的值/摘要。如果showlatent为TRUE(默认值),则显示潜在变量绘制的值/摘要。在上面的示例中,仅显示参数绘制的摘要。

Summary of 10000 MCMC draws after a burn-in of 1000.Prior distributions:mu ~ Normal(mean = -10, sd = 1)(phi+1)/2 ~ Beta(a0 = 20, b0 = 1.1)sigma^2 ~ 0.1 * Chisq(df = 1)Posterior draws of parameters (thinning = 1):mean sd 5% 50% 95% ESSmu -10.1366 0.22711 -10.4749 -10.1399 -9.7933 4552phi 0.9935 0.00282 0.9886 0.9938 0.9977 397sigma 0.0656 0.01001 0.0509 0.0649 0.0830 143exp(mu/2) 0.0063 0.00075 0.0053 0.0063 0.0075 4552sigma^2 0.0044 0.00139 0.0026 0.0042 0.0069 143

(1)volplot:绘制潜在稳定率的分位数,以百分比示意,即随工夫变动的后验散布的教训分位数。罕用的可选参数包含n步稳定率的预测,x轴上标签的日期以及一些图形参数。上面的代码片段显示了一个典型示例,图3显示了其输入。

(2)paratraceplot:显示中蕴含的参数的轨迹图。图5显示了一个示例。

 (3)paradensplot:显示中蕴含的参数的核密度估计。为了更快地绘制较大的后验样本,应将此参数设置为FALSE。如果参数showprior为TRUE(默认值),则先验散布通过虚线灰色线批示。图6显示了从汇率提取数据集中取得的EUR-USD汇率的示例输入。

svdraws对象的通用绘图办法将上述所有图合并。能够应用上述所有参数。请参见图7。

R> plot(res, showobs = FALSE)

 为了提取标准化残差,能够在给定的svdraws对象上应用残差办法。应用可选的参数类型,能够指定摘要统计的类型。以后,类型容许为“平均值”或“中位数”,其中前者对应于默认值。此办法返回svresid类的实向量,其中蕴含每个工夫点所申请的标准化残差的摘要统计量。还有一种绘图办法,当参数origdata给定时,提供了将标准化残差与原始数据进行比拟的选项。请参见上面的代码,对于相应的输入,请参见图8。


最受欢迎的见解

1.HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频稳定率

2.WinBUGS对多元随机稳定率模型:贝叶斯预计与模型比拟

3.稳定率的实现:ARCH模型与HAR-RV模型

4.R语言ARMA-EGARCH模型、集成预测算法对SPX理论稳定率进行预测

5.应用R语言随机稳定模型SV解决工夫序列中的随机稳定率

6.R语言多元COPULA GARCH 模型工夫序列预测

7.R语言基于ARMA-GARCH过程的VAR拟合和预测

8.R语言随机搜寻变量抉择SSVS预计贝叶斯向量自回归(BVAR)模型

9.R语言对S&P500股票指数进行ARIMA + GARCH交易策略