machine_learning.py
这部分代码对应文章的机器学习局部。
-- coding: utf-8 --
import os
import warnings
import numpy as np
from sklearn import preprocessing
import pickle
用于机器学习的第三方库导入
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import MultinomialNB
from read_data import read_data_from_path
from read_data import plot_cluster
from read_data import plot_surface
warnings.filterwarnings("ignore") #不显示正告
def select_knn(X,Y):
""""筛选kNN算法的最合适参数k"""grid = {'n_neighbors':[3,5,7,9,11,13,15,17,19,21,23,25,27]} grid_search = GridSearchCV(KNeighborsClassifier(),\ param_grid=grid, cv=5, scoring='accuracy') grid_search.fit(X,Y) print(grid_search.best_params_) return grid_search.best_params_
def select_svc(X,Y):
grid = {'C':[0.1,0.25,0.5,0.75,1,1.25,1.5,1.75],\ 'kernel':['linear','rbf','poly']} grid_search = GridSearchCV(SVC(),param_grid=grid,cv=5, scoring='accuracy')grid_search.fit(X,Y) print(grid_search.best_params_) return grid_search.best_params_
def select_dtc(X,Y):
grid = {'max_depth':[19,24,29,34,39,44,49,54,59,64,69,74,79],\ 'ccp_alpha':[0,0.00025,0.0005,0.001,0.00125,0.0015,0.002,0.005,0.01,0.05,0.1]} grid_search = GridSearchCV(DecisionTreeClassifier(),\ param_grid=grid, cv=5, \ scoring='accuracy')grid_search.fit(X,Y)print(grid_search.best_params_) return grid_search.best_params_
def select_rf(X,Y):
grid = {'n_estimators':[15,25,35,45,50,65,75,85,95]}grid_search = GridSearchCV(RandomForestClassifier(max_samples=0.67,\ max_features=0.33, max_depth=5), \ param_grid=grid, cv=5,\ scoring='accuracy')grid_search.fit(X,Y)print(grid_search.best_params_)return grid_search.best_params_
def select_ada(X,Y):
grid = {'n_estimators':[15,25,35,45,50,65,75,85,95]}grid_search = GridSearchCV(AdaBoostClassifier( \ base_estimator=LogisticRegression()),\ param_grid=grid, cv=5, scoring='r2')grid_search.fit(X,Y)print(grid_search.best_params_)return grid_search.best_params_
def select_model(X,Y):
knn_param = select_knn(X,Y)svc_param = select_svc(X,Y)dtc_param = select_dtc(X,Y)rf_param = select_rf(X,Y)ada_param = select_ada(X,Y)return knn_param, svc_param, dtc_param, rf_param, ada_param
def cv_score(X, Y, \
knn_param={'n_neighbors':25}, \ svc_param={'C': 0.1, 'kernel': 'rbf'},\ dtc_param={'ccp_alpha':0.01, 'max_depth':19}, \ rf_param={'n_estimators':75},\ ada_param={'n_estimators':15}): """根据上述最优参数,构建模型"""lg = LogisticRegression()knn = KNeighborsClassifier(n_neighbors=knn_param['n_neighbors'])svc = SVC(C=svc_param['C'], [PayPal下载](https://www.gendan5.com/wallet/PayPal.html)kernel=svc_param['kernel'])dtc = DecisionTreeClassifier(max_depth=dtc_param['max_depth'], ccp_alpha=dtc_param['ccp_alpha'])rf = RandomForestClassifier(n_estimators=rf_param['n_estimators'],\ max_samples=0.67,\ max_features=0.33, max_depth=5)ada = AdaBoostClassifier(base_estimator=lg,\ n_estimators=ada_param['n_estimators'])NB = MultinomialNB(alpha=1) """用5折穿插验证,计算所有模型的 r2,并计算其均值"""S_lg_i = cross_val_score(lg, X, Y, \ scoring='accuracy',cv=5) S_knn_i = cross_val_score(knn, X, Y, \ scoring='accuracy',cv=5) S_svc_i = cross_val_score(svc, X, Y, \ scoring='accuracy',cv=5) S_dtc_i = cross_val_score(dtc, X, Y, \ scoring='accuracy',cv=5) S_rf_i = cross_val_score(rf, X, Y, \ scoring='accuracy',cv=5) S_ada_i = cross_val_score(ada, X, Y, \ scoring='accuracy',cv=5) S_NB_i = cross_val_score(NB, X, Y,\ scoring='accuracy',cv=5) print(f'lg : {np.mean(S_lg_i)}') print(f'knn : {np.mean(S_knn_i)}')print(f'svc : {np.mean(S_svc_i)}')print(f'dtc :{np.mean(S_dtc_i)}')print(f'rf : {np.mean(S_rf_i)}')print(f'ada : {np.mean(S_ada_i)}')print(f'NB : {np.mean(S_NB_i)}')return S_lg_i, S_knn_i, S_svc_i, S_dtc_i, S_rf_i, S_ada_i, S_NB_i
if name == '__main__':
data_after_clu = pickle.load(open(r'.\model_and_data\data_after_clu.pkl','rb'))ener_div = pickle.load(open(r'.\model_and_data\ener_div.pkl','rb'))
print(data_after_clu)
print(ener_div)
knn_param, svc_param, dtc_param, rf_param, ada_param = select_model(data_after_clu,
ener_div)
S_lg_i, S_knn_i, S_svc_i, S_dtc_i, \ S_rf_i, S_ada_i, S_NB_i= cv_score(data_after_clu,ener_div)