TensorFlow 筹备 JupyterLab 交互式笔记本环境,不便咱们边写代码、边做笔记。
根底环境
以下是本文的根底环境,不详述装置过程了。
Ubuntu
Ubuntu 18.04.5 LTS (Bionic Beaver)
- ubuntu-18.04.5-desktop-amd64.iso
CUDA
CUDA 11.2.2
- cuda_11.2.2_460.32.03_linux.run
cuDNN 8.1.1
- libcudnn8_8.1.1.33-1+cuda11.2_amd64.deb
- libcudnn8-dev_8.1.1.33-1+cuda11.2_amd64.deb
- libcudnn8-samples_8.1.1.33-1+cuda11.2_amd64.deb
Anaconda
Anaconda Python 3.8
- Anaconda3-2020.11-Linux-x86_64.sh
conda activate base
装置 JupyterLab
Anaconda 环境里已有,如下查看版本:
jupyter --version
不然,如下进行装置:
conda install -c conda-forge jupyterlab
装置 TensorFlow
创立虚拟环境 tf
,再 pip
装置 TensorFlow:
# create virtual environmentconda create -n tf python=3.8 -yconda activate tf# install tensorflowpip install --upgrade pippip install tensorflow
测试:
$ python - <<EOFimport tensorflow as tfprint(tf.__version__, tf.test.is_built_with_gpu_support())print(tf.config.list_physical_devices('GPU'))EOF
2021-04-01 11:18:17.719061: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.02.4.1 True2021-04-01 11:18:18.437590: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set2021-04-01 11:18:18.437998: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.12021-04-01 11:18:18.458471: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero2021-04-01 11:18:18.458996: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:pciBusID: 0000:01:00.0 name: GeForce RTX 2060 computeCapability: 7.5coreClock: 1.35GHz coreCount: 30 deviceMemorySize: 5.79GiB deviceMemoryBandwidth: 245.91GiB/s2021-04-01 11:18:18.459034: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.02021-04-01 11:18:18.461332: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.112021-04-01 11:18:18.461362: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.112021-04-01 11:18:18.462072: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.102021-04-01 11:18:18.462200: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.102021-04-01 11:18:18.462745: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.102021-04-01 11:18:18.463241: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.112021-04-01 11:18:18.463353: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.82021-04-01 11:18:18.463415: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero2021-04-01 11:18:18.463854: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero2021-04-01 11:18:18.464170: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
Solution: Could not load dynamic library 'libcusolver.so.10'
cd /usr/local/cuda/lib64sudo ln -sf libcusolver.so.11 libcusolver.so.10
装置 IPython kernel
在虚拟环境 tf
里,装置 ipykernel
与 Jupyter 交互。
# install ipykernel (conda new environment)conda activate tfconda install ipykernel -ypython -m ipykernel install --user --name tf --display-name "Python TF"# run JupyterLab (conda base environment with JupyterLab)conda activate basejupyter lab
<!--
jupyter kernelspec list
jupyter kernelspec remove tf
-->
另一种形式,可用 nb_conda 扩大,其于笔记里会激活 Conda 环境:
# install ipykernel (conda new environment)conda activate tfconda install ipykernel -y# install nb_conda (conda base environment with JupyterLab)conda activate baseconda install nb_conda -y# run JupyterLabjupyter lab
最初,拜访 http://localhost:8888/ :
参考
Install TensorFlow 2
- Build from source
- GPU support
Install TensorFlow - Anaconda
- anaconda / packages / tensorflow
- Installing the IPython kernel
GoCoding 集体实际的教训分享,可关注公众号!