作者:杨涛涛

资深数据库专家,专研 MySQL 十余年。善于 MySQL、PostgreSQL、MongoDB 等开源数据库相干的备份复原、SQL 调优、监控运维、高可用架构设计等。目前任职于爱可生,为各大运营商及银行金融企业提供 MySQL 相干技术支持、MySQL 相干课程培训等工作。

本文起源:原创投稿

* 爱可生开源社区出品,原创内容未经受权不得随便应用,转载请分割小编并注明起源。

前言

我之前有一篇介绍在 MySQL SHELL 环境中如何对文档类数据进行操作,然而 MySQL SHELL 性能很多,除了能够操作文档类数据,也能够对关系表进行各种 DDL,DML 等操作。这里我就用几个简略例子来示范下如何用 MySQL SHELL 操作关系表。

此处援用的数据库示例基于官网的 SAMPLE DATABASE:WORLD,表构造以及数据能够自行下载。

MySQL SHELL 对关系型数据库的操作波及到三个组件:

  1. MySQL:传统 mysql,操作比较简单,除了写法有些差别外,基本上等同于 SQL 操作。
  2. MySQL X:基于 X DEV 协定操作 mysql,其中蕴含很多类,除了能够操作文档数据,也能够操作关系表。
  3. SHELL:蕴含了以上两个组件,能够随便切换,重点在于如何抉择连贯协定。

咱们来顺次看看各个组件对关系表的罕用检索形式。

第一:mysql 组件

连贯数据库:mysql.get_session 或者 mysql.get_classic_session

能够用如下传统拼串形式连贯数据库:

MySQL  Py > connection_url="mysql://root:root@localhost/world?socket=(/var/lib/mysql/official/mysql.sock)"MySQL  Py > ytt_cn1 = mysql.get_session(connection_url);MySQL  Py > ytt_cn1<ClassicSession:root@localhost>

也能够用字典的形式连贯数据库:

MySQL  Py > connection_url={"schema":"world","user":"root","password":"root","socket":"/var/lib/mysql/official/mysql.sock"}MySQL  Py > ytt_cn1=mysql.get_session(connection_url);MySQL  Py > ytt_cn1<ClassicSession:root@/var%2Flib%2Fmysql%2Fofficial%2Fmysql.sock>

接下来能够用 ClassicSession 类提供的各种办法来对关系表进行相干操作,所有的操作都能够间接用函数 run_sql 来执行:

对表 city 查问:

MySQL  Py > ytt_cn1.run_sql("table city limit 1")+----+-------+-------------+----------+------------+| ID | Name  | CountryCode | District | Population |+----+-------+-------------+----------+------------+|  1 | Kabul | AFG         | Kabol    |    1780000 |+----+-------+-------------+----------+------------+1 row in set (0.0005 sec)

对表 city 插入:

MySQL  Py > ytt_cn1.run_sql("insert into city(name,countrycode,population,district) values ('test','CHN',1000000,'dd')")Query OK, 1 row affected (0.0079 sec)MySQL  Py > ytt_cn1.run_sql("select * from city where name ='test'")+------+------+-------------+----------+------------+| ID   | Name | CountryCode | District | Population |+------+------+-------------+----------+------------+| 4097 | test | CHN         | dd       |    1000000 |+------+------+-------------+----------+------------+1 row in set (0.0032 sec)

对表 city 更新:

MySQL  Py > ytt_cn1.run_sql("update city set name='who know ?' where id=4097")Query OK, 1 row affected (0.0894 sec)Rows matched: 1  Changed: 1  Warnings: 0MySQL  Py > ytt_cn1.run_sql("select * from city where id=4097")+------+------------+-------------+----------+------------+| ID   | Name       | CountryCode | District | Population |+------+------------+-------------+----------+------------+| 4097 | who know ? | CHN         | dd       |    1000000 |+------+------------+-------------+----------+------------+1 row in set (0.0005 sec)

对表 city 删除:

MySQL  Py > ytt_cn1.run_sql("delete from city where id=4097")Query OK, 1 row affected (0.0739 sec)MySQL  Py > ytt_cn1.run_sql("select * from city where id=4097")Empty set (0.0004 sec)

开启一个事务块:

MySQL  Py > ytt_cn1.start_transaction();Query OK, 0 rows affected (0.0003 sec)MySQL  Py > ytt_cn1.run_sql("delete from city where id =1")Query OK, 1 row affected (0.0006 sec)MySQL  Py > ytt_cn1.rollback();Query OK, 0 rows affected (0.2070 sec)MySQL  Py > ytt_cn1.run_sql("select * from city where id = 1")+----+-------+-------------+----------+------------+| ID | Name  | CountryCode | District | Population |+----+-------+-------------+----------+------------+|  1 | Kabul | AFG         | Kabol    |    1780000 |+----+-------+-------------+----------+------------+1 row in set (0.0004 sec)

敞开连贯:

MySQL  Py > ytt_cn1.close();MySQL  Py > ytt_cn1<ClassicSession:disconnected>

第二:mysqlx 组件

MySQL X 组件蕴含了很多类,上面我来举几个罕用的例子:

仍然是先连贯数据库 world:X 协定端口 33060 或者 X SOCKET(用 mysqlx.get_session 办法)。

MySQL  Py > connection_urlx="mysqlx://root:root@localhost/world?socket=(/var/lib/mysql/official/mysqlx.sock)"MySQL  Py > ytt_cnx1=mysqlx.get_session(connection_urlx);

比方找出人口小于800的城市并且列出对应的国家名字:

SQL: select a.id,a.name,b.name country_name, a.population from city a join country b on (a.countrycode = b.code and a.population < 800);
SQLRESULT 类:相似于 mysql 游标用法
MySQL  Py > sql1="select a.id,a.name,b.name country_name, a.population from city a join country b on (a.countrycode = b.code and a.population < 800)"MySQL  Py > sql_result1=ytt_cnx1.run_sql(sql1)

获取前两行:默认不带字段名

MySQL  Py > sql_result1.fetch_one()[    62,    "The Valley",    "Anguilla",    595]MySQL  Py > sql_result1.fetch_one()[    1791,    "Flying Fish Cove",    "Christmas Island",    700]

获取带字段名的记录:

MySQL  Py > sql_result1.fetch_one_object();{    "country_name": "Cocos (Keeling) Islands",     "id": 2316,     "name": "Bantam",     "population": 503}

一次性获取残余的行:

MySQL  Py > sql_result1.fetch_all()[    [        2317,        "West Island",        "Cocos (Keeling) Islands",        167    ],     [        2728,        "Yaren",        "Nauru",        559    ],     [        2805,        "Alofi",        "Niue",        682    ],     [        2912,        "Adamstown",        "Pitcairn",        42    ],     [        3333,        "Fakaofo",        "Tokelau",        300    ],     [        3538,        "Città del Vaticano",        "Holy See (Vatican City State)",        455    ]]
SqlExecute 类:相似于 prepare 语句用法

比方把之前的人口判断条件替换为绑定变量(?或者变量(:a)),这样能够不便多个条件一起查问。

MySQL  Py > sql2="select a.id,a.name,b.name country_name, a.population from city a join country b on (a.countrycode = b.code and a.population < ?)"MySQL  Py > sql_result2=ytt_cnx1.sql(sql2);

给定两个不同的人口条件:

MySQL  Py > a=800MySQL  Py > b=500

绑定变量执行后果:

MySQL  Py > sql_result2.bind(a)+------+--------------------+-------------------------------+------------+| id   | name               | country_name                  | population |+------+--------------------+-------------------------------+------------+|   62 | The Valley         | Anguilla                      |        595 || 1791 | Flying Fish Cove   | Christmas Island              |        700 || 2316 | Bantam             | Cocos (Keeling) Islands       |        503 || 2317 | West Island        | Cocos (Keeling) Islands       |        167 || 2728 | Yaren              | Nauru                         |        559 || 2805 | Alofi              | Niue                          |        682 || 2912 | Adamstown          | Pitcairn                      |         42 || 3333 | Fakaofo            | Tokelau                       |        300 || 3538 | Città del Vaticano | Holy See (Vatican City State) |        455 |+------+--------------------+-------------------------------+------------+9 rows in set (0.0022 sec)MySQL  Py > sql_result2.bind(b)+------+--------------------+-------------------------------+------------+| id   | name               | country_name                  | population |+------+--------------------+-------------------------------+------------+| 2317 | West Island        | Cocos (Keeling) Islands       |        167 || 2912 | Adamstown          | Pitcairn                      |         42 || 3333 | Fakaofo            | Tokelau                       |        300 || 3538 | Città del Vaticano | Holy See (Vatican City State) |        455 |+------+--------------------+-------------------------------+------------+4 rows in set (0.0023 sec)
Table 类:获取以后连贯数据库下单张表,能够对这张表进行任何 DML 操作。(获取 Table 类之前,得先获取 Schema 类)
MySQL  Py > ytt_schema1=ytt_cnx1.get_schema('world')MySQL  Py > ytt_tbname1=ytt_schema1.get_table('city'); 

查找人口少于 800 的记录:

MySQL  Py > ytt_tbname1.select().where("population<800")+------+--------------------+-------------+-------------+------------+| ID   | Name               | CountryCode | District    | Population |+------+--------------------+-------------+-------------+------------+|   62 | The Valley         | AIA         | –           |        595 || 1791 | Flying Fish Cove   | CXR         | –           |        700 || 2316 | Bantam             | CCK         | Home Island |        503 || 2317 | West Island        | CCK         | West Island |        167 || 2728 | Yaren              | NRU         | –           |        559 || 2805 | Alofi              | NIU         | –           |        682 || 2912 | Adamstown          | PCN         | –           |         42 || 3333 | Fakaofo            | TKL         | Fakaofo     |        300 || 3538 | Città del Vaticano | VAT         | –           |        455 |+------+--------------------+-------------+-------------+------------+9 rows in set (0.0024 sec)

还能够持续排序以及限度记录数输入:

MySQL  Py > ytt_tbname1.select().where("population<800").order_by("population desc ").limit(3)+------+------------------+-------------+----------+------------+| ID   | Name             | CountryCode | District | Population |+------+------------------+-------------+----------+------------+| 1791 | Flying Fish Cove | CXR         | –        |        700 || 2805 | Alofi            | NIU         | –        |        682 ||   62 | The Valley       | AIA         | –        |        595 |+------+------------------+-------------+----------+------------+3 rows in set (0.0024 sec)
Table 类蕴含几个子类:TableSelect、TableInsert、TableUpdate、TableDelete。

TableSelect:保留查问后果

之前查找人口小于 800 的记录后果即为 TableSelect,能够基于此类来后续操作

MySQL  Py > tbselect1=ytt_tbname1.select().where("population<800")

只拿出局部字段:

MySQL  Py > tbselect1.select("[id,name]").order_by("population desc").limit(2);+----------------------------+| JSON_ARRAY(`id`,`name`)    |+----------------------------+| [1791, "Flying Fish Cove"] || [2805, "Alofi"]            |+----------------------------+2 rows in set (0.0031 sec)

TableInsert:执行插入语句

插入一行:

MySQL  Py > ytt_tbname1.count()4081MySQL  Py > tbinsert1=ytt_tbname1.insert(["name","population","countrycode","district"]).values('test',1000000,'CHN','dd');MySQL  Py > tbinsert1.execute();Query OK, 1 item affected (0.0054 sec)MySQL  Py > ytt_tbname1.count()4082

插入多行:有两种办法

多 VALUES 模式:

MySQL  Py > tbinsert1=ytt_tbname1.insert(["name","population","countrycode","district"]).values('test',1000000,'CHN','dd').values('test',1000000,'CHN','dd');MySQL  Py > tbinsert1.execute()Query OK, 2 items affected (0.0325 sec)Records: 2  Duplicates: 0  Warnings: 0MySQL  Py > MySQL  Py > ytt_tbname1.count()4084

屡次执行或者蕴含在事务块里:

MySQL  Py > ytt_cnx1.start_transaction();Query OK, 0 rows affected (0.0004 sec)MySQL  Py > tbinsert1=ytt_tbname1.insert(["name","population","countrycode","district"]).values('test',1000000,'CHN','dd');MySQL  Py > tbinsert1Query OK, 1 item affected (0.0008 sec)MySQL  Py > tbinsert1Query OK, 1 item affected (0.0006 sec)MySQL  Py > tbinsert1Query OK, 1 item affected (0.0008 sec)MySQL  Py > tbinsert1Query OK, 1 item affected (0.0006 sec)MySQL  Py > ytt_cnx1.commit();Query OK, 0 rows affected (0.2737 sec)MySQL  Py > ytt_tbname1.count()4088

TableUpdate:执行更新语句

MySQL  Py > tbupdate1=ytt_tbname1.update().set('district','nothing').where("name='test'")MySQL  Py > tbupdate1Query OK, 0 items affected (0.0048 sec)Rows matched: 9  Changed: 9  Warnings: 0

TableDelete:执行删除语句

MySQL  Py > tbdelete1=ytt_tbname1.delete().where("district='nothing'");MySQL  Py > tbdelete1Query OK, 9 items affected (0.0112 sec)MySQL  Py > ytt_tbname1.count()4079

第三:SHELL 组件

SHELL 组件能够在 MySQL 和 MySQL X 间随便切换,并且连贯后,蕴含了一个默认数据库类 “db”,db 等价于 ytt_cnx1.get_current_schema(),

MySQL  Py > ytt_cnx_shell1=shell.connect(connection_urlx)Creating an X protocol session to 'root@localhost/world'Fetching schema names for autocompletion... Press ^C to stop.Your MySQL connection id is 10 (X protocol)Server version: 8.0.23 MySQL Community Server - GPLDefault schema `world` accessible through db

仍然还是操作表 city,

MySQL  localhost+ ssl  world  Py > ytt_tbname2=db.get_table("city")MySQL  localhost+ ssl  world  Py > ytt_tbname2<Table:city>

之后的操作和之前 mysqlx 的一样。

MySQL  localhost+ ssl  world  Py > ytt_tbname2.select(['id','name']).where("population<800").order_by("id desc").limit(3);+------+--------------------+| id   | name               |+------+--------------------+| 3538 | Città del Vaticano || 3333 | Fakaofo            || 2912 | Adamstown          |+------+--------------------+3 rows in set (0.0011 sec)

所以如果用 MySQL SHELL 来操作 mysql 关系表,举荐用 SHELL 组件的形式,非常灵活。