'''
八方向连贯算法
'''
import numpy as np
import matplotlib.image as mpimg
from PIL import Image
def compute_conv(fm, kernel, judge=None, kernel_num=3):

[h, w] = fm.shapek = kernel_numr = int(k / 2)padding_fm = np.zeros([h + 2, w + 2])rs = np.zeros([h, w])padding_fm[1:h + 1, 1:w + 1] = fmfor i in range(1, h + 1):    for j in range(1, w + 1):        if padding_fm[i, j] != 0:            rs[i - 1][j - 1] = 128            continue        if judge is not None:            if judge[i, j] == 0:                continue        # (0,0),(3,3)        i0 = i - r        i1 = i + r + 1        j0 = j - r        j1 = j + r + 1        roi = padding_fm[i0:i1, j0:j1]        rs[i - 1][j - 1] = np.sum(roi * kernel)return rs

def compute_conv_plus(fm, kernel):

[h, w] = fm.shape  # 512,512k = 5r = int(k / 2)  # 2padding_fm = np.zeros([h + 4, w + 4])  # 516,516print(padding_fm.shape)rs_plus = np.zeros([h, w])  # 512,512padding_fm[2:h + 2, 2:w + 2] = fm  # 存储原像素值for i in range(2, h + 2):    for j in range(2, w + 2):        # (0,0),(4,4)        i0 = i - r        i1 = i + r + 1        j0 = j - r        j1 = j + r + 1        roi = padding_fm[i0:i1, j0:j1]        print("roi.shape({})".format(roi.shape))        print("kernel.shape({})".format(kernel.shape))        rs_plus[i - 2][j - 2] = np.sum(roi * kernel)        # 为什么最初一个输入的roi大小是(5,4)return rs_plus

def kernel_i():

weights_data = [    [1, 1, 1],    [1, 0, 1],    [1, 1, 1]]weights = np.asarray(weights_data)return weights

def kernel_j():

weights_data = [    [1, 1, 1, 1, 1],    [1, 1, 1, 1, 1],    [1, 1, 0, 1, 1],    [1, 1, 1, 1, 1],    [1, 1, 1, 1, 1]]weights = np.asarray(weights_data)return weights

上方向

def kernel_up():

weights_data = [    [1, 1, 1],    [0, 0, 0],    [0, 0, 0]]weights = np.asarray(weights_data)return weights

下方向

def kernel_down():

weights_data = [    [0, 0, 0],    [0, 0, 0],    [1, 1, 1]]weights = np.asarray(weights_data)return weights

def kernel_left():

weights_data = [    [1, 0, 0],    [1, 0, 0],    [1, 0, 0]]weights = np.asarray(weights_data)return weights

def kernel_right():

weights_data = [    [0, 0, 1],    [0, 0, 1],    [0, 0, 1]]weights = np.asarray(weights_data)return weights

def kernel_left_up():

weights_data = [    [1, 1, 0],    [1, 0, 0],    [0, 0, 0]]weights = np.asarray(weights_data)return weights

def kernel_right_down():

weights_data = [    [0, 0, 0],    [0, 0, 1],    [0, 1, 1]]weights = np.asarray(weights_data)return weights

def kernel_right_up():

weights_data = [    [0, 1, 1],    [0, 0, 1],    [0, 0, 0]]weights = np.asarray(weights_data)return weights

def kernel_left_down():

weights_data = [    [0, 0, 0],    [1, 0, 0],    [1, 1, 0]]weights = np.asarray(weights_data)return weights

def main():

for i in range(c):    l1 = temp[:, :, i]    kernel_1 = [kernel_up(), kernel_left(), kernel_left_up(), kernel_right_up()]    kernel_2 = [kernel_down(), kernel_right(), kernel_right_down(), kernel_left_down()]    input = np.asarray(l1)    # 八方向判断    kernel_1_res = []    kernel_2_res = []    for weight1, weight2 in zip(kernel_1, kernel_2):        kernel_1_res.append(compute_conv(input, weight1))        kernel_2_res.append(compute_conv(input, weight2))    # 构建判断矩阵,[电子钱包](https://www.gendan5.com/wallet.html)用来判断某个像素是否进行卷积    judge = np.zeros((h + 2, w + 2))    for x in range(h):        for y in range(w):            one_side = False            for w1_res, w2_res in zip(kernel_1_res, kernel_2_res):                if (w1_res[x, y] > 0 and w2_res[x, y] <= 0) or (w1_res[x, y] == 0 and w2_res[x, y] != 0):                    one_side = True            if not one_side:                judge[x + 1, y + 1] = 1    result = compute_conv(input, kernel_i(), judge=judge)    for x in range(h):        for y in range(w):            if result[x, y] != 0:                result[x, y] = 128            else:                result[x, y] = 0    arr[:, :, i] = resultarr01 = np.array(arr, dtype=np.uint8)image = Image.fromarray(arr01, 'RGB')image.save(r'')

img = mpimg.imread(r'')
temp = np.asarray(img)
[h, w, c] = temp.shape
arr = np.zeros((h, w, c), int)
main()