前序

上文讲到rt0_go的runtime·schedinit(SB)

TEXT runtime·rt0_go<ABIInternal>(SB),NOSPLIT,$0    // 略, 查看 golang调度学习-调度流程 (一)        // create a new goroutine to start program    MOVQ    $runtime·mainPC(SB), AX                        // entry, 就是 $runtime·main    PUSHQ    AX                                          // newproc 的第二个参数    PUSHQ    $0                                            // arg size的第一个参数    CALL    runtime·newproc(SB)                         // 调用 runtime·newproc($0, $runtime·mainPC(SB))    POPQ    AX    POPQ    AX        // start this M    CALL    runtime·mstart(SB)    CALL    runtime·abort(SB)    // mstart should never return    RET    // Prevent dead-code elimination of debugCallV1, which is    // intended to be called by debuggers.    MOVQ    $runtime·debugCallV1<ABIInternal>(SB), AX    RET

newproc

创立一个新的g运行带siz字节参数的fn, 并且把它放到g.m.p的待运行队列
在编写程序中,应用 go func() {}来创立一个goroutine(g),这条语句会被编译器翻译成函数 newproc()。

// Create a new g running fn with siz bytes of arguments.// Put it on the queue of g's waiting to run.// The compiler turns a go statement into a call to this.//// The stack layout of this call is unusual: it assumes that the// arguments to pass to fn are on the stack sequentially immediately// after &fn. Hence, they are logically part of newproc's argument// frame, even though they don't appear in its signature (and can't// because their types differ between call sites).//// This must be nosplit because this stack layout means there are// untyped arguments in newproc's argument frame. Stack copies won't// be able to adjust them and stack splits won't be able to copy them.////go:nosplitfunc newproc(siz int32, fn *funcval) {   argp := add(unsafe.Pointer(&fn), sys.PtrSize)                        // 上面例子a=1的地位   gp := getg()   pc := getcallerpc()                                                  // 上面例子funCaller的PC   systemstack(func() {                                                 // 在g0的堆栈上执行      newg := newproc1(fn, argp, siz, gp, pc)                           // 新建g,上面剖析源码      _p_ := getg().m.p.ptr()      // 把newg放到_p_的runnext      // runqput第三个参数如果是True就把g放到runnext,runnext原有的放到runq。 否则g放到runq      // 如果runq满了就放到sched.runq(要加锁)      // 参考 https://blog.csdn.net/diaosssss/article/details/93066804      runqput(_p_, newg, true)      if mainStarted {         wakep()                                                        // 上面剖析源码      }   })}

假如是调用

go funCaller() {    go funcA(a=1, b=2)}

newproc的调用栈, caller SP示意funCaller的SP

地位
(24)caller SPb=2
(16)caller SPa=1
(8)caller SP*funcA
(0)caller SPsiz=24, sizeof(1)+sizeof(2)+sizeof(*funcA)
(-8)caller SPcaller PC

newproc1

// Create a new g in state _Grunnable, starting at fn, with narg bytes// of arguments starting at argp. callerpc is the address of the go// statement that created this. The caller is responsible for adding// the new g to the scheduler.//// This must run on the system stack because it's the continuation of// newproc, which cannot split the stack.////go:systemstackfunc newproc1(fn *funcval, argp unsafe.Pointer, narg int32, callergp *g, callerpc uintptr) *g {    _g_ := getg()    if fn == nil {        _g_.m.throwing = -1 // do not dump full stacks        throw("go of nil func value")    }    acquirem()         // disable preemption because it can be holding p in a local var, loc++    siz := narg    siz = (siz + 7) &^ 7    // We could allocate a larger initial stack if necessary.    // Not worth it: this is almost always an error.    // 4*sizeof(uintreg): extra space added below    // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).    // 参数大小不能大概初始栈大小    if siz >= _StackMin-4*sys.RegSize-sys.RegSize {        throw("newproc: function arguments too large for new goroutine")    }    _p_ := _g_.m.p.ptr()    newg := gfget(_p_)                              // 从缓存中读取g, 详见下文    if newg == nil {                                newg = malg(_StackMin)                      // 缓存中没有g, 新建g。调配栈为 2k 大小的G对象        casgstatus(newg, _Gidle, _Gdead)            //将g的状态改为_Gdead         // 增加到allg数组,避免gc扫描革除掉        allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.    }    if newg.stack.hi == 0 {        throw("newproc1: newg missing stack")    }    if readgstatus(newg) != _Gdead {        throw("newproc1: new g is not Gdead")    }    totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame    totalSize += -totalSize & (sys.SpAlign - 1)                  // align to spAlign    // 新协程的栈顶计算,将栈顶减去参数占用的空间    sp := newg.stack.hi - totalSize    spArg := sp    if usesLR {        // caller's LR        *(*uintptr)(unsafe.Pointer(sp)) = 0        prepGoExitFrame(sp)        spArg += sys.MinFrameSize    }    if narg > 0 {           // 如果有参数        // copy参数到栈上        memmove(unsafe.Pointer(spArg), argp, uintptr(narg))        // This is a stack-to-stack copy. If write barriers        // are enabled and the source stack is grey (the        // destination is always black), then perform a        // barrier copy. We do this *after* the memmove        // because the destination stack may have garbage on        // it.        if writeBarrier.needed && !_g_.m.curg.gcscandone {            f := findfunc(fn.fn)            stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))            //一些gc相干的工作省略            if stkmap.nbit > 0 {                // We're in the prologue, so it's always stack map index 0.                bv := stackmapdata(stkmap, 0)                bulkBarrierBitmap(spArg, spArg, uintptr(bv.n)*sys.PtrSize, 0, bv.bytedata)            }        }    }    // 初始化G的gobuf,保留sp,pc,工作函数等    memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))    newg.sched.sp = sp    newg.stktopsp = sp    newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function    newg.sched.g = guintptr(unsafe.Pointer(newg))    gostartcallfn(&newg.sched, fn)    newg.gopc = callerpc    newg.ancestors = saveAncestors(callergp)    newg.startpc = fn.fn    if _g_.m.curg != nil {        newg.labels = _g_.m.curg.labels    }    if isSystemGoroutine(newg, false) {        atomic.Xadd(&sched.ngsys, +1)    }    casgstatus(newg, _Gdead, _Grunnable)    if _p_.goidcache == _p_.goidcacheend {        // Sched.goidgen is the last allocated id,        // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].        // At startup sched.goidgen=0, so main goroutine receives goid=1.        _p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)        _p_.goidcache -= _GoidCacheBatch - 1        _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch    }    newg.goid = int64(_p_.goidcache)    _p_.goidcache++    if raceenabled {        newg.racectx = racegostart(callerpc)    }    if trace.enabled {        traceGoCreate(newg, newg.startpc)    }    releasem(_g_.m)    return newg}

gfget

从缓存中获取g

// Get from gfree list.// If local list is empty, grab a batch from global list.func gfget(_p_ *p) *g {retry:    // 如果_p_.gFree为空,sched.gFree.stack或者sched.gFree.noStack不为空,偷最多32个过去    if _p_.gFree.empty() && (!sched.gFree.stack.empty() || !sched.gFree.noStack.empty()) {        lock(&sched.gFree.lock)        // Move a batch of free Gs to the P.        for _p_.gFree.n < 32 {            // Prefer Gs with stacks.            gp := sched.gFree.stack.pop()            if gp == nil {                gp = sched.gFree.noStack.pop()                if gp == nil {                    break                }            }            sched.gFree.n--            _p_.gFree.push(gp)            _p_.gFree.n++        }        unlock(&sched.gFree.lock)        goto retry    }        gp := _p_.gFree.pop()    if gp == nil {        return nil    }    _p_.gFree.n--    if gp.stack.lo == 0 {        // Stack was deallocated in gfput. Allocate a new one.        systemstack(func() {            gp.stack = stackalloc(_FixedStack)        })        gp.stackguard0 = gp.stack.lo + _StackGuard    } else {        if raceenabled {            racemalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo)        }        if msanenabled {            msanmalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo)        }    }    return gp}

malg()

malg()函数创立一个新的g,包含为该g申请栈空间(反对程序调配栈的零碎)。零碎中的每个g都是由该函数创立而来的

// Allocate a new g, with a stack big enough for stacksize bytes.func malg(stacksize int32) *g {    newg := new(g)    if stacksize >= 0 {        stacksize = round2(_StackSystem + stacksize)        systemstack(func() {            newg.stack = stackalloc(uint32(stacksize))        })        newg.stackguard0 = newg.stack.lo + _StackGuard        newg.stackguard1 = ^uintptr(0)        // Clear the bottom word of the stack. We record g        // there on gsignal stack during VDSO on ARM and ARM64.        *(*uintptr)(unsafe.Pointer(newg.stack.lo)) = 0    }    return newg}

gfput

// Put on gfree list.// If local list is too long, transfer a batch to the global list.func gfput(_p_ *p, gp *g) {    if readgstatus(gp) != _Gdead {        throw("gfput: bad status (not Gdead)")    }    stksize := gp.stack.hi - gp.stack.lo    if stksize != _FixedStack {        // non-standard stack size - free it.        stackfree(gp.stack)        gp.stack.lo = 0        gp.stack.hi = 0        gp.stackguard0 = 0    }    _p_.gFree.push(gp)    _p_.gFree.n++    if _p_.gFree.n >= 64 {        lock(&sched.gFree.lock)        for _p_.gFree.n >= 32 {            _p_.gFree.n--            gp = _p_.gFree.pop()            if gp.stack.lo == 0 {                sched.gFree.noStack.push(gp)            } else {                sched.gFree.stack.push(gp)            }            sched.gFree.n++        }        unlock(&sched.gFree.lock)    }}

wakep

援用文章

[1] Go语言底细(6):启动和内存调配初始化 https://studygolang.com/artic...